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CAM plasticity in epiphytic tropical orchid 
species responding to environmental stress
Shawn Tay1, Jie He1*  and Tim Wing Yam2

Abstract 

Background: To counteract its dramatic species endangerment caused by extensive loss of habitat, Singapore is 
currently re-introducing into nature some of the native orchids to conserve and improve their germplasm. A main 
challenge of re-introduction is growing and establishing these plants under natural conditions, which are semi-arid 
with periodic drought. In this study, six native species were examined, of which three, Bulbophyllum vaginatum, Den-
drobium leonis and Phalaenopsis cornu-cervi, are viewed as CAM species while the other three, Coelogyne rochussenii, 
Coelogyne mayeriana, and Bulbophyllum membranaceum are usually characterized as  C3 species. We aimed to com-
pare their physiological responses to drought under two different light conditions: (1) moderate light (photosynthetic 
photon flux density, PPFD of 900 μmol m−2  s−1) and (2) low light (PPFD < 100 μmol m−2  s−1).

Results: After 7 weeks of drought under moderate light (DRML), photosynthetic light utilization was reduced in all six 
species, and relative water content (RWC) in leaves decreased to < 50% in CAM orchids, compared to > 50% in  C3 spe-
cies, while RWC in pseudobulbs (produced by 4 of the species) fell to < 50%. Both effects were reversed after 14 weeks 
of re-watering. Proline concentration in leaves increased in the CAM orchids and B. membranaceum (60–130 µmol g−1 
FW), and CAM acidity increased (0.2 to 0.8 mmol  H+/g fresh weight) in leaves and pseudobulbs of most species 
including  C3 orchids after 7 weeks of DRML, but to lesser extent in B. membranaceum.

Conclusion: In the six native orchid species tested, osmoregulation by proline and CAM expression were adaptive 
responses to maintain photosynthesis under drought stress. Expression of CAM is a significant adaptive mechanism to 
drought in both  C3 and CAM orchids. For  C3 B. membranaceum, this CAM activity is best described as ‘CAM-idling’. We 
propose that any future work in understanding adaptive responses in Singapore’s native epiphytic orchids to periodic 
water deficit should also analyse the significance of CAM plasticity on water conservation within the plant and the 
regulation of CAM by prevailing water status and light intensity.
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Background
Over the past 51 years of rapid urbanization, Singapore 
has had 178 of 226 native orchid species extinct and 40 
critically endangered, due to extensive habitat loss (Davi-
son et al. 2008). It is therefore imperative that Singapore 
re-introduce these native orchid species with the goal 
of conserving orchid germplasm, increasing their num-
bers, and enriching biodiversity. In the re-introduction 

of native orchids in Singapore for conservation, there 
are challenges in growing and establishing these orchids 
under natural conditions (Yam and Thame 2005; Yam 
et  al. 2011; Yam 2013). These mostly epiphytic orchids 
are exposed to stress from moderate to high light (PPFDs 
of 400–1300 μmol m−2  s−1) (Tay et al. 2015), high tem-
peratures and periodic water deficit. These stress fac-
tors reportedly reduce chlorophyll content and PSII 
efficiency, leading to reduced growth and productivity 
(He et al. 1998; Khoo et al. 1998; Tay et al. 2015). How-
ever, epiphytic orchids are known to adapt to semi-arid 
habitats with periodic drought by utilizing Crassulacean 
acid metabolism (CAM) (Cushman 2001; Lüttge 2004; 
Silvera et  al. 2009, 2010b; Kerbauy et  al. 2012; Yang 
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et  al. 2016), so as to maintain a tightly balanced water 
economy and carbon fixation despite stomatal closure 
(Adams and Osmond 1988; Benzing 1989; Silvera et  al. 
2010b). The physiology and biochemical changes over 
four phases that constitute CAM have been described 
in detail (Osmond 1978; Griffiths 1988), where there is a 
diurnal fluctuation in organic acids due to decarboxyla-
tion (Osmond 1978) as a  CO2-concentrating mechanism 
within the leaf during the day while stomatal conduct-
ance is reduced, thereby suppressing photorespiration 
and maintaining photosynthetic carbon fixation (Silvera 
et al. 2010a).

A continuum exists in the degree of CAM expression 
in plants with several intermediates in between, and the 
degree of CAM expression is dependent on the evolu-
tionary history of the given species and the environmen-
tal context (Cushman and Bohnert 1999; Cushman 2001; 
Cushman and Borland 2002; Winter and Holtum 2014; 
Nosek et al. 2018). In many species, CAM in fully mature 
photosynthetic organs is ‘obligate’ or ‘constitutive’, but 
with different extents of gas exchange and nocturnal 
acidification regulated by prevailing environmental 
conditions (Griffiths 1988). Otherwise, the remaining 
‘facultative’, ‘inducible’, or ‘optional’ CAM or  C3-CAM 
intermediate species express CAM as a physiological 
response to environmental stress (Griffiths 1988; Win-
ter et al. 2008; Winter and Holtum 2014). The expression 
of CAM in such  C3-CAM intermediate species varies 
dynamically with experimental conditions, such as pho-
toperiod (Brulfert and Queiroz 1982), light, temperature, 
or atmospheric  CO2 concentration (Griffiths 1988; Lüttge 
2004, 2007); drought (Borland et  al. 1992) and salinity 
(Winter and Holtum 2014; Oh et  al. 2015; Nosek et  al. 
2018).

Previous literature has stated that orchids with suc-
culent leaves, such as Bulbophyllum vaginatum, Den-
drobium leonis and Phalaenopsis cornu-cervi, are 
characteristic of CAM expression (Wadasinghe and Hew 
1995; Hew et al. 1998; Motomura et al. 2008; Yam 2013; 
Yong et al. 2015), while thin-leaved orchids such as Coe-
logyne rochussenii, Coelogyne mayeriana and Bulbophyl-
lum membranaceum fix carbon primarily through the  C3 
pathway (Arditti 1980; Hew and Yong 2004). However, in 
view of CAM expression being a continuum, it is possible 
that C. rochussenii, C. mayeriana and B. membranaceum 
might be  C3-CAM intermediate species that possess var-
ying degrees of CAM expression depending on the envi-
ronmental conditions.

Under drought stress and high irradiance, relative 
water content (RWC) decreases in leaves and pseudob-
ulbs of epiphytic orchids (Stancato et al. 2001) and it has 
also been reported that RWC is closely associated with 
tissue metabolic activities, water loss by transpiration 

and drought stress response (Anjum et al. 2011). There-
fore, it is a good representation of the water status of the 
plant and a measure of tolerance to water deficit. In addi-
tion, under drought stress and high irradiance, photosyn-
thetic light utilization in orchids is reduced, and orchids 
are more susceptible to photoinhibition (Stancato et  al. 
2001). In response to drought stress, drought-tolerant 
plants maintain water-use efficiency by reducing water 
loss (Anjum et  al. 2011) and one of such water conser-
vation strategies in orchids is through CAM expression, 
which helps improve carbon gains and water use effi-
ciency (Benzing 1998; Herrera 2009). Drought-tolerant 
plants may also accumulate different solutes in the cyto-
sol to lower osmotic potential and maintain cell turgor 
(Jain et  al. 2001;  Hosseini et  al. 2018; Kozminska et  al. 
2018). Of these solutes, proline is the most widely studied 
because its accumulation is the first response of plants 
exposed to drought stress, with known associations in 
reducing photoinhibition (Anjum et al. 2011).

The physiological responses to stress from drought and 
high irradiance in relation to the varying degrees of CAM 
expression in the six native species is also not well under-
stood. Therefore, it is our interest in this study to make 
a comparison between the six species so as to deter-
mine how photosynthetic light utilization varies with 
the degree of CAM expression, and how relative water 
content and proline concentration changes correspond-
ingly under drought treatment and well-watered con-
ditions. We are also interested in determining whether 
CAM expression can be ‘inducible’ in the  C3 orchids, 
C. rochussenii, C. mayeriana and B. membranaceum by 
stress from drought and high irradiance, and whether it 
is a significant water conservation strategy employed by 
these three species in adapting to drought. The informa-
tion gathered would be useful in improving the approach 
towards conservation of orchid species in their natural 
environments in Singapore, to the benefit of more suc-
cessful re-introduction.

Materials and methods
Plant material
In this study, six epiphytic orchids native to Singapore 
were used (Table 1).

Plant cultivation under tropical greenhouse conditions
Mature plants of C. rochussenii, C. mayeriana, B. vagi-
natum, B. membranaceum, D. leonis and P. cornu-cervi 
were grown in the tropical greenhouse in the National 
Institute of Education, Singapore. Under natural condi-
tions in Singapore, most native species including the six 
species used for this study, are normally grown under 
PPFDs ranged from 30 to 200 μmol m−2  s−1. In this study, 
each of the six species was divided into two groups. They 
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were respectively, exposed to moderate light (ML) with-
out netting inside the greenhouse and low light (LL) with 
two layers of black netting. The PPFD was then measured 
every Wednesday at 1200  h, regardless of the weather 
or cloud cover, over the 21-week experimental period. 
The greenhouse ambient PPFD ranged from 180 to 
900 μmol m−2  s−1 under ML (Fig. 1a), while it was below 
100  μmol  m−2  s−1 under LL (Fig.  1b). Under each light 
condition, each of the six species was further divided into 
two groups, respectively used for well-watered (WW) 
and drought (DR) treatments. Therefore, there were four 
conditions: well-watered with moderate light (WWML), 
drought with moderate light (DRML), well-watered with 
low light (WWLL), drought with low light (DRLL). Well-
watered condition was achieved through watering twice 
daily (at 0900  h and 1700  h), each lasting a duration of 

10  min. Drought treatment involved the suspension of 
watering for 7  weeks, after which the plants were re-
watered over an additional 14 weeks. Ambient day tem-
perature was about 30 to 35  °C during the photoperiod. 
The orchids were not fertilized during the treatments 
under the four conditions.

Measurement of PPFD
PPFD was measured using a photosynthetically avail-
able radiation quantum sensor and reading unit (Skye 
Instruments Ltd, Llandrindod, UK). The stabilized PPFD, 
within a range of 0 to 1999 μmol m−2  s−1, was measured 
from six different positions above the leaves for moder-
ate light and low light respectively just prior to the meas-
urements of chlorophyll (Chl) fluorescence  Fv/Fm ratio 

Table 1 Details of the six native orchids used in this study

Full scientific name and authority Common name References for photosynthetic 
characterization  (C3 or CAM)

C3 Coelogyne rochussenii
de Vriese (1854)

Rouchussen’s Coelogyne Arditti (1980); Hew and Yong (2004)

Coelogyne mayeriana
Rchb. f. 1877

Mayer’s Coelogyne

Bulbophyllum membranaceum Teijsm. and 
Binn. 1854

The Membranous Bulbophyllum

CAM Bulbophyllum vaginatum
(Lindl.) Rchb.f 1864

The Vagina Bulbophyllum Yam (2013); Yong et al. (2015)

Dendrobium leonis
Rchb. f. 1864

The lion-like Dendrobium Wadasinghe and Hew (1995); Hew et al. (1998)

Phalaenopsis cornu-cervi
(Breda) Blume and Rchb.f. 1860

Deer antlered phalaenopsis Motomura et al. (2008)
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described in the next section, and an average was calcu-
lated from the six values measured.

Measurement of midday Chl fluorescence  Fv/Fm ratio
The  Fv/Fm ratios were taken using the Plant Efficiency 
Analyzer, PEA (Hansatech Instruments Ltd, England) 
at the same time corresponding to the measurement of 
the PPFD between 1200 and 1300 h. Three samples were 
taken from each species under each of the four treatment 
conditions, with the method as detailed in our previous 
study (Tay et al. 2015). The results of the 1st, 7th and 21st 
weeks were compared.

Measurements of electron transport rate (ETR), 
photochemical quenching (qP) and non‑photochemical 
quenching (NPQ)
Leaves were harvested at about 1300  h on the 2nd, 7th 
and 21st weeks of the experimental period. Square cuts 
(1 cm by 1 cm) were made out of the leaves and placed 
on moist filter papers in Petri dishes. Leaf cuts were pre-
darkened for 15 min prior to measurements. A compari-
son test among 10, 15, 20 and 30 min of dark adaptation 
was carried out on well-watered leaves before select-
ing a period of 15  min for dark adaptation. There were 
no significant differences in  Fm and  Fv/Fm ratio (data not 
shown) among 15, 20 and 30 min of dark-adapted leaves 
for all species. Thus, a darkness of 15 min was used for 
this study. Through the Imaging-PAM Chl Fluorometer 
(Walz, Effeltrich, Germany), images of fluorescence emis-
sion were digitized within the camera and transmitted 
via a Firewire interface (400  Mb/s) (Firewire-1394.com, 
Austin, TX, USA) to a computer for storage and analy-
sis. Measurements and calculations of ETR, qP, and NPQ 
was determined according to He et al. (2011).

Measurement of midday RWC 
Leaf samples were harvested on the same day corre-
sponding to the measurement of the PPFD, on the 1st, 
7th and 21st weeks of the experimental period after 
measuring  Fv/Fm ratios. Square cuts (1 cm by 1 cm) were 
made out of the leaves and 5 mm thick slices were made 
out of the pseudobulbs, and RWC was measured accord-
ing to the method detailed in our previous study (Tay 
et al. 2015).

Measurement of proline concentration in leaves
This assay was modified from the protocol by Bates et al. 
(1973). Leaf samples were harvested together with those 
used for midday RWC measurements on the same day 
corresponding to the measurement of the PPFD, for 1st, 
7th and 21st weeks. The samples were then frozen using 
liquid nitrogen and stored at − 80 °C. Frozen plant mate-
rial (0.5 g) was ground with 3% sulfosalicylic acid (6 ml) 

and the homogenate was centrifuged at 9000  rpm for 
10 min at 4  °C. A mixture of 1 ml of supernatant, 1 ml 
of acid-ninhydrin and 1  ml of acetic acid was heated at 
95  °C for 1  h in water bath. The reaction was stopped 
in an ice bath. The reaction mixture was extracted with 
toluene (2 ml) by vortexing for 30 s and then leaving to 
stand. The absorbance was read at 520 nm using toluene 
as a blank. The proline concentration was determined 
from a standard curve.

Measurement of diurnal fluctuation in titratable acidity 
(TA)
The TA of leaves and pseudobulbs were determined 
immediately before and after a 10-h photoperiod (at 
0800 h and 1800 h), modified from the method by He and 
Teo (2007). Samples were harvested on Thursdays for the 
1st, 7th and 21st weeks. Five square cuts (1 cm by 1 cm) 
were made out of the leaves and 5 mm thick slices were 
made out of the pseudobulbs, which were then trans-
ferred into test tubes containing

1  ml of distilled water (neutral pH). The tubes were 
then immersed into a boiling water-bath for 15 min and 
then allowed to cool to room temperature. The extract 
was subsequently titrated against 0.01 M sodium hydrox-
ide solution, NaOH(aq), using phenolphthalein as an 
indicator. The volume of NaOH(aq) required to reach the 
end-point of titration was recorded. The plant material 
was then wrapped in an aluminum foil and dried in an 
oven at 80  °C for 1 week before the dry weight (DW) is 
measured. The TA was calculated by first using the for-
mula: [0.01 × volume of NaOH(aq)]/DW, followed by 
obtaining the difference in this calculated value immedi-
ately before and after the 10-h photoperiod.

Statistical analysis
One-way ANOVA was used to test for significant differ-
ences between weeks under the four different treatments 
(IBM SPSS Statistics for Macintosh, Version 22.0, 2013). 
The  Fv/Fm ratio and PPFD parameters were also sub-
jected to Pearson correlation analyses between them.

Results
Photosynthetic light utilization efficiency
The PPFD over the 21-week period ranged from 180 to 
900  μmol  m−2  s−1 under DRML (Fig.  1a), and WWML 
(Fig.  1b), and below 100  μmol  m−2  s−1 under DRLL 
(Fig.  1a), and WWLL (Fig.  1b). There were greater 
fluctuations in PPFD under ML than under LL. After 
7  weeks of drought treatment (DRML and DRLL),  Fv/
Fm ratio decreased in both  C3 and CAM orchids as com-
pared to after 1  week of drought, where it was close to 
0.8 (Fig. 2). After 7 weeks of DRML (Fig. 2a),  Fv/Fm ratio 
of  C3 orchid B. membranaceum, C. mayeriana and C. 
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rochussenii, respectively decreased to 0.678, 0.503, 0.469 
while that of CAM orchid P. cornu-cervi, D. leonis and, 
B. vaginatum, respectively declined to 0.560, 0.421 and 
0.274 (Fig. 2a). After 7 weeks of DRLL, the six orchid spe-
cies also showed a decrease in  Fv/Fm ratio, compared to 
after 1  week of DRLL. Subsequently, after 14  weeks of 
re-watering,  Fv/Fm ratios increased back to levels of ≥ 0.8 
comparable to that after 1  week of drought, except for 

C. rochussenii and P. cornu-cervi (Fig.  2b). These  Fv/Fm 
ratios were plotted against the corresponding PPFD, for 
drought treatment (Fig.  3a–f) and well-watered condi-
tions respectively (Fig. 3g–l). Pearson correlation coeffi-
cient (r value) was also calculated for each species. Under 
well-watered conditions (Fig.  3g–l), there was moder-
ately strong negative correlation (− 0.813 < r < − 0.560), 
but under drought treatment (Fig.  3a–f), the negative 
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correlation is weak (− 0.454 < r < -0.101), suggesting a 
greater influence of drought treatment over the  Fv/Fm 
ratio rather than the fluctuations in PPFD.

To further understand the photosynthetic light 
response under DRML, the changes in Chl fluorescence 
parameters for the six species were studied (Fig.  4). 
After 7  weeks of drought stress, when measured under 
higher PPFDs, ETR decreased significantly in all spe-
cies (Fig.  4a–f), qP decreased significantly in B. vagina-
tum (Fig. 4j) and D. leonis (Fig. 4k), while NPQ increased 
significantly in C. rochussenii (Fig.  4m) and D. leonis 
(Fig.  4q) compared to those of 2  weeks drought. Inter-
estingly, the values of NPQ were lower in P. cornu-cervi 
after 7 weeks of DRML compared to 2 weeks of DRML 
(Fig.  4r). In B. membranaceum ETR (Fig.  4c) and qP 
(Fig.  4i) decreased after 7  weeks drought (DRML) and 
continued to decrease even after 14 weeks of re-watering. 
After 14 weeks of re-watering, the ETR increased in only 
B. vaginatum (Fig.  4d) and D. leonis (Fig.  4e), as com-
pared to those after 7 weeks of DRML. The correspond-
ing NPQ in these two species showed a decrease in B. 

vaginatum (Fig. 4p), but an increase in D. leonis (Fig. 4q) 
after 14  weeks of re-watering, and the corresponding 
qP in these two species (Fig.  4j, k) showed an increase, 
compared to week 7 drought stress. After re-watering 
for 14 weeks, NPQ decreased in C. rochussenii (Fig. 4m), 
C. mayeriana (Fig.  4n) and B. membranaceum (Fig.  4o) 
compared the values of NPQ obtained after 7  weeks 
drought.

Water relations
Under well-watered conditions, there was no signifi-
cant change in RWC of leaves and pseudobulbs, which 
remained at 85–94% (data not shown). The RWC of 
leaves of the six species (Fig. 5) and pseudobulbs of the 
four species that produce them (Fig.  6) decreased sig-
nificantly after 7  weeks of drought treatment compared 
to 1  week of drought stress. Under DRML for 7  weeks, 
RWC of leaves (Fig. 5a) decreased to a range of 55–63% 
in the  C3 orchids C. rochussenii, C. mayeriana, and B. 
membranaceum, while RWC of leaves also decreased 
in CAM orchids, but to 27% in B. vaginatum, 30% in 
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D. leonis, and 50% in P. cornu-cervi. Under DRLL for 
7  weeks, RWC of leaves (Fig.  5b) decreased to a range 
of 58–77%. Figure 6 shows the RWC of four species that 
have pseudobulbs. Under DRML, RWC of pseudobulbs 
in C. rochussenii, C. mayeriana, B. membranaceum and 
B. vaginatum reduced to 50% or less (Fig.  6a). Under 
DLL, RWC of pseudobulbs in these four species reduced 
to 37–56% (Fig.  6b). Therefore, between DRML and 
DRLL, RWC of leaves generally decreased to a greater 
extent in ML than after 7  weeks of drought. Under 
DRML, RWC of leaves (Fig. 5a) and pseudobulbs (Fig. 6a) 
increased following 14  weeks of re-watering compared 
to those measured after 7 weeks drought. In the case of 
DRLL, following 14 weeks of re-watering, RWC of leaves 
(Fig. 5b) increased significantly in only C. mayeriana and 

D. leonis, while RWC in pseudobulbs (Fig. 6b) increased 
significantly in the four species. However, a point of note 
is that the RWC in leaves (Fig. 5b) in all six species before 
and after re-watering were already > 58%.

Proline concentration
Under DRML and DRLL, proline concentration 
increased in the leaves of B. membranaceum, B. vagina-
tum, D. leonis and P. cornu-cervi after 7 weeks of drought. 
However, under DRML and DRLL, there were no signifi-
cant changes in leaf proline concentrations of C. rochus-
senii and C. mayeriana after 7  weeks of drought, and 
even after 14  weeks of re-watering (Fig.  7a, b). Proline 
concentrations decreased after 14  weeks of re-watering 
in B. membranaceum (Bm) under moderate light and 
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low light, and in B. vaginatum and P. cornu-cervi under 
low light. After re-watering, proline concentrations were 
higher than after 1 week of drought in B. vaginatum, D. 
leonis and P. cornu-cervi under moderate light (Fig.  7a), 
and in B. membranaceum, B. vaginatum, D. leonis and P. 
cornu-cervi under low light (Fig. 7b).

CAM activity
Under well-watered conditions after 1 week, 7 weeks and 
21  weeks, there were no significant differences between 
weeks under WWML (Fig.  8a) and under WWLL 
(Fig. 8b). After 7 weeks of drought, TA in leaves increased 
significantly under DRML (Fig. 8c) in all species, except 
B. membranaceum and P. cornu-cervi. The TA in leaves 
also increased significantly under DRLL (Fig.  8d) in all 
species except D. leonis and P. cornu-cervi.

After 14 weeks of re-watering, TA in leaves decreased 
under DRML (Fig.  8c) in C. rochussenii, C. membrana-
ceum and B. vaginatum compared to after 7  weeks of 
drought (Fig. 8c). Whereas under DRLL, TA in leaves of 
all species after 14  weeks of re-watering had no signifi-
cant difference compared to 7 weeks of drought, except 
for B. membranaceum, which showed a significant 
increase (Fig. 8d).

Under WWML and WWLL (Fig.  9a, b), TA in pseu-
dobulbs had no significant difference between weeks 2, 
7 and 21. After 7  weeks of drought, TA in pseudobulbs 
also increased under DRML (Fig. 9c) and DRLL (Fig. 9d) 
in the four species with pseudobulbs, even in the  C3 
orchids, C. rochussenii, C. mayeriana and B. membrana-
ceum. The TA in pseudobulbs decreased after 14  weeks 
of re-watering, except for C. rochussenii and B. vagina-
tum under DRLL (Fig. 9d), which had no significant dif-
ference compared to after 7 weeks of drought.

Discussion
Photosynthetic light utilization and water relations in CAM 
versus  C3 orchids
In Singapore, some 70% of our native orchids are vascu-
lar epiphytes (Yam 2013) exposed to abiotic stress from 
their natural environments (Goh and Kluge 1989; He 
et  al. 1998). Photosynthetic light utilization and water 
economy in these epiphytes are sensitive to their micro-
climate (Benzing 1998), where high light in excess of 
photosynthetic capacity reduces photosynthetic light 
utilisation (Demmig-Adams and Adams 1992). Further-
more, under high light, water status takes physiological 
precedence over maximizing photosynthesis, because of 
the impact of water status on stomatal conductance (Ort 
2001). This limits  CO2 uptake into leaves, which in turn 
reduces the amount of internal  CO2 available for car-
bon fixation during photosynthesis. This study showed 
that after 7  weeks under DRML and DRLL,  Fv/Fm ratio 
decreased in both  C3 and CAM orchids (Fig. 2) with no 
clear distinction between either group. All these effects 
were reversed after 14 weeks of re-watering. Moderately 
strong negative correlation under well-watered condi-
tions (Fig. 3g–l) against weak negative correlation under 
drought treatment (Fig.  3a–f) between  Fv/Fm ratio and 
PPFD further suggests the physiological significance of 
water status in limiting photosynthesis, rendering even 
moderate light in excess of photosynthetic capacity. 
Other studies with orchids were also found that under 
high light and drought stress, photosynthetic light utili-
zation decreased, accompanied by photoinhibition and 
leaf chlorosis (Johnson 1993; He et al. 1998, 2004, 2013, 
2014; Stancato et al. 2001; Tay et al. 2015). However, after 
re-watering, orchids show recovery from photoinhibition 
despite high PPFD (Zotz and Tyree 1996).
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In the present study, under DRML, ETR decreased 
significantly in all species (Fig.  4a–f), which suggests a 
decrease in dissipation of excess excitation energy, possi-
bly due to increased photoinactivation, as a form of pho-
toprotection against high light and drought (Chow et al. 
2005). Dissipation of excess energy through NPQ is also 
a significant photoprotective mechanism in C. rochus-
senii and D. leonis as shown in its increase (Fig. 4m–q). 
However, the continued decrease in ETR in B. mem-
branaceum after re-watering (Fig. 4c) could be due to a 
slower recovery from photoinactivation for this species 
compared to the other species, since  Fv/Fm increased 
back to ≥ 0.8, as mentioned earlier (Fig. 2). Interestingly, 
two CAM orchids, B. vaginatum and D. leonis showed 
significantly increased ETR (Fig.  4d, e) and qP (Fig.  4j, 
k) under moderate light, as compared to after 7 weeks of 
DRML, which suggests that a corresponding increase in 
CAM activity in these two species over the same drought 

period (Fig. 8c) might have had a positive effect in speed-
ing the recovery during re-watering. This is possibly due 
to the effect of CAM on minimizing photorespiration 
but enhancing carbon assimilation, maintaining photo-
synthetic integrity during drought (Cushman 2001) and 
affording strong protection from photoinhibition under 
high light (Adams and Osmond 1988). This is further sup-
ported by a recent study (Pikart et al. 2018) where under 
water deficiency, a bromeliad Guzmania monostachia 
did not show changes to PSII integrity and carbohydrate 
production while CAM activity increased, and spots with 
high PSII efficiency in the leaf portion correlated with 
greater CAM activity in plants exposed to drought. In 
another study, a CAM orchid Doritaenopsis showed sig-
nificant tolerance to drought stress with stomatal closure 
and corresponding increased CAM activity, and there-
after, increased photosynthesis after re-watering (Cui 
et  al. 2004). In addition, Kornas et  al. (2009) suggested 
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that increasing NPQ and citrate decarboxylation delivers 
protection for CAM plant Clusia minor. This contributes 
significantly to photosynthetic light utilization and allows 
for more thermal dissipation of light energy, thus pre-
venting long-term photoinhibitory damage.

After 7  weeks of DRML, RWC in leaves decreased 
to 55–63% in  C3 orchids and 27–50% in CAM orchids 
(Fig. 5a), while under DRLL, RWC in leaves decreased to 
58–77% (Fig.  5b). The higher RWC in leaves of  C3 spe-
cies compared to CAM species under DRML could be 
attributed to the larger size of pseudobulbs in C. rochus-
senii and C. mayeriana compared to the other species in 
the present study (Fig.  10). Pseudobulbs play important 
roles in storage and supply of water (Hew and Yong 1994; 
Ng and Hew 2000; Stancato et  al. 2001; He et  al. 2013; 
Yang et  al. 2016; He 2018) compared to fleshy leaves in 
the case of the CAM orchids, D. leonis and P. cornu-cervi. 
For instance, Yang et  al. (2016) examined the anatomi-
cal traits and water loss rates of leaves and pseudobulbs 

of four Dendrobium species and found that Dendrobium 
species with thin cuticles tend to have pseudobulbs with 
high water storage capacity that compensates for their 
faster rates of water loss. In Fig.  6a, the RWC of pseu-
dobulbs decreased significantly to 50% or less, which sug-
gests that the pseudobulbs were supplying water to the 
leaves during drought. The lower RWC in leaves of CAM 
orchids without pseudobulbs would therefore necessitate 
engaging other mechanisms to maintain fairly high cel-
lular water content in order to sustain photosynthesis. 
Some of these mechanisms include maintaining turgor 
and protection of cellular functions through osmotic 
adjustment and cellular compatible solute accumulation 
(Jain et  al. 2001; Anjum et  al. 2011; Blum 2017; Hos-
seini et al. 2018). During drought, greater water-use effi-
ciency is also necessary and this can be achieved through 
osmoregulation (Anjum et  al. 2011), regulation at sto-
matal level to reduce transpirational water loss (Fang 
and Xiong 2014), and alteration of carbon metabolism to 
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achieve water-carbon economy (Borland et al. 1992). For 
instance, it has been shown by Minardi et al. (2014) that 
the epiphytic fern, Vittaria lineata seemed to change its 
mode of carbon fixation from  C3 to the CAM pathway 
in response to drought stress and exogenous application 
of abscisic acid. In this study, despite CAM orchids hav-
ing lower RWC, the  Fv/Fm ratio decreased in both  C3 and 
CAM orchids with no clear distinction between either 
group, suggesting that osmoregulation and increased 
CAM activity could have played a significant role in 
maintaining photosynthesis in CAM orchids.

Osmoregulation through proline accumulation in CAM 
versus  C3 orchids
One such adaptive mechanism to drought is the accumu-
lation of proline in plants, which is a common physiologi-
cal response to abiotic stresses (Kaur and Asthir 2015) 
adapting to adverse environmental conditions, including 

osmoregulation in drought tolerance (Yang et  al. 2015), 
so as to maintain high cellular water potential. It has also 
been shown that severe water stress induces up to 100-
fold accumulation in free-proline (Barnett and Naylor 
1966). In this study, after 7 weeks of DRML, the higher 
levels of proline concentration in the three CAM orchids, 
compared to 1  week of drought (Fig.  7a) suggest that 
drought results in increased free-proline accumulation in 
the CAM orchids more than in the  C3 orchids, with the 
exception of B. membranaceum. In B. membranaceum, 
proline concentration is the highest out of the six species, 
possibly due to its smallest pseudobulb size being unable 
to store much water and supplying it to the leaves. There-
fore, B. membranaceum relies on osmoregulation by pro-
line as a significant adaptive mechanism to drought (Kaur 
and Asthir 2015; Blum 2017). The free-proline concen-
tration did not decrease significantly in B. membrana-
ceum, B. vaginatum, D. leonis and P. cornu-cervi under 

Fig. 10 Specimens of the six species studied with organs labelled: a C. rochussenii, b C. mayeriana, c B. membranaceum, d B. vaginatum, e D. leonis, f 
P. cornu-cervi. White bar at the bottom-left corner of each specimen image represents 5 cm
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moderate light, and D. leonis under low light, even after 
14 weeks of re-watering (Fig. 7a, b) and the proline con-
centration after 14 weeks of re-watering was still higher 
than after 1 week drought in B. vaginatum, D. leonis and 
P. cornu-cervi under DRML and DRLL, and in B. mem-
branaceum under DRLL, suggesting that free-proline 
accumulation in leaves could either exist as a mecha-
nism of drought hardening—a long-term strategy against 
future drought occurrences (Yang et al. 2015). Otherwise, 
proline concentration remained at this level because this 
would continue as long as the orchid is recovering from 
abiotic stress, as supported by a study showing proline as 
a drought stress indicator (Ings et al. 2013).

In the case of  C3 C. rochussenii and C. mayeriana, the 
proline concentration did not show significant changes 
after 7 weeks of DRML or DRLL (Fig. 7a, b) despite leaf 
RWC decreasing to 55–78% under DRML and DRLL 
(Fig. 5a, b), which again suggests the significance of pseu-
dobulbs supplying water to the leaves to main turgor 
pressure in these two species (Ng and Hew 2000; He et al. 
2013; Yang et al. 2016; He 2018), which may play a greater 
role compared to the use of proline as an osmolyte to 
maintain leaf turgor pressure (Kaur and Asthir 2015; 
Blum 2017).

This study showed that proline concentration did 
increase in the CAM orchids, corresponding with the 
decrease in leaf RWC, Fv/Fm and ETR, after 7  weeks 
of DRML. Through the use of proline as an osmolyte to 
maintain higher leaf water potentials, these orchids are 
responding to the decreased leaf water potentials associ-
ated with stress (Hayat et  al. 2012) which would other-
wise lead to decreased photosynthesis (Zotz and Tyree 
1996; Chaves et al. 2009), and a severe water deficit that 
will lead to limitation of photosynthetic rate due to sto-
matal closure, and consequentially a smaller pool of 
reductants for electrons, thereby damaging photosystem 
due to the excess energy transduced (Lawlor and Tezara 
2009).

Plasticity of CAM and water economy in the six native 
orchid species
Another adaptive mechanism to drought is expression 
of CAM. Under arid conditions, orchids utilizing CAM 
would be able to maintain a tightly balanced water econ-
omy and carbon fixation (Adams and Osmond 1988; 
Benzing 1989, 1998; Cushman 2001; Silvera et al. 2010b), 
overcoming limited  CO2 intake in the day as stoma-
tal conductance decreases to reduce water loss. With 
RWC decreasing in leaves, CAM activity also becomes 
a significant adaptation to drought in both  C3 and CAM 
orchids in this study, as shown in the significant increase 
in CAM activity after 7  weeks of DRML (Fig.  9c) and 
DRLL (Fig.  9d) in most of the six species. With CAM, 

the orchids are able to regulate stomatal conductance 
and reduce transpirational loss. Therefore, these orchids 
will be able to conserve water in response to decreased 
leaf RWC. However, since stomatal conductance was not 
measured in this study, it was not clear if the reduced 
transpirational loss would have compromised  CO2 
uptake or otherwise. Nevertheless, CAM has been shown 
to alleviate the limitation on carbon fixation, which 
would have otherwise led to the excitation energy being 
in excess such that is damaging to the photosystems as 
elaborated earlier, through decreased reductant pool 
(Lawlor and Tezara 2009). The result of the CAM activity 
in  C3 and CAM orchids suggests the existence of plastic-
ity in CAM expression in these six native orchids regard-
less of their predominance of either  C3 or CAM. It also 
highlights the role of CAM activity as a significant adap-
tive mechanism of modulating gas exchange and noctur-
nal acidification in response to prevailing environmental 
conditions or stress (Brulfert and Queiroz 1982; Griffiths 
1988; Winter et al. 2008). These six species might possess 
varying degrees of CAM expression along a continuum 
(Silvera et al. 2010a) with species-specific responses fine-
tuned to environmental changes for survival. However, 
for CAM orchid P. cornu-cervi, CAM activity seems to 
be more ‘obligate’, independent of drought treatment and 
remaining at around 0.3  mmol  H+/g DW after 7  weeks 
of WWML (Fig. 9a), DRML (Fig. 9c) and DRLL (Fig. 9d), 
yet still able to decrease under low light if well-watered 
(Fig. 9b).

Interestingly, for the  C3 orchid B. membranaceum, 
CAM activity did not change significantly between 1 
and 7 weeks of DRML and after re-watering (Fig. 9c) but 
increased after 7 weeks of DRLL, even after re-watering 
(Fig.  9d). Therefore, this suggests that the severity of 
the stress from DRML could have resulted in no signifi-
cant changes in acid accumulation in the leaf but is evi-
dently higher in the pseudobulb (Fig. 9c). In such cases, 
small, sustained diurnal fluctuations in organic acids 
with essentially all of the  CO2 fixed into malate could be 
derived from internally recycled respiratory  CO2 (Liu 
et al. 2018) or shuttled from the pseudobulb to the leaf, as 
proposed by Rodrigues et al. (2013) in a organ-compart-
mented  C3-CAM plasticity. Overall, this small, sustained 
diurnal fluctuations in organic acids might aid in prevent-
ing photoinhibition by maintaining photosystem stability 
(Osmond 1982; Adams and Osmond 1988; Lüttge 2004; 
Kerbauy et al. 2012; Pikart et al. 2018) when under severe 
stress from DRML conditions. Whereas under DRLL, TA 
increased in B. membranaceum, which suggests that in 
the absence of the additional stress from moderate light, 
drought stress alone is sufficient to induce CAM expres-
sion in B. membranaceum. In addition, under DRML or 
DRLL, the pseudobulbs of B. membranaceum would also 
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express CAM, possibly to further support the production 
of malate to supply the leaves. This is also the suggested 
case for drought treated  C3 orchid Oncidium ‘Aloha’, 
where CAM is exhibited in pseudobulbs under drought 
stress, which possibly acts as storage of malate in the 
night, to be used for carbon fixation during the day (Rod-
rigues et  al. 2013). Furthermore, it has also been sug-
gested that respiratory  CO2 generated by the underlying 
parenchyma in pseudobulbs could be recycled through 
CAM (Ng and Hew 2000), and regenerative photosynthe-
sis occurs in pseudobulbs of Oncidium Goldiana with the 
presence of enzymes for carbon fixation and CAM activ-
ity (Hew et al. 1998).

In the case of  C3 orchids C. rochussenii and C. mayeri-
ana, the increased CAM activity in leaves (Fig. 8c, d) and 
pseudobulbs (Fig. 9c, d) under DRML and DRLL suggest 
that CAM is also inducible in these two  C3 species when 
under stress in these two conditions, and that this CAM 
activity can be reduced upon re-watering, in C. rochus-
senii and C. mayeriana leaves and pseudobulb under 
DRML, as well as C. mayeriana pseudobulb under DRLL.

This result of the CAM activity in these six species 
under the 4 conditions seem to point towards the regula-
tion of CAM activity by prevailing water status and light 
intensity. Since water status and  CO2 intake is also linked 
to stomatal conductance, further analysis of the diurnal 
and weekly changes in stomatal gas exchange under pro-
longed drought stress is needed to better understand the 
relationship between stomatal conductance, water status 
and CAM activity in these six species. It would also be 
beneficial to study the changes in CAM activity in these 
species with respect to changing environmental condi-
tions, through C13 experiments, in future, so as to pro-
vide more insight into their CAM activities.

Conclusion
In the six native orchids studied, drought has physiological 
significance in reducing photosynthetic capacity and limit-
ing photosynthesis. The effect of drought also reduced the 
ability of photosynthetic apparatus to dissipate excess exci-
tation energy, but this may be due to photoinactivation—a 
necessary photoprotection. Re-watering was able to reverse 
these effects of reduced photosynthetic light utilization, 
but in B. membranaceum, recovery from photoinactiva-
tion was slowest. Larger pseudobulbs in C. rochussenii and 
C. mayeriana compared to the other species could serve a 
greater role in reducing the effects of drought on decreas-
ing RWC in leaves. Two significant adaptive mechanisms 
to drought are the free-proline accumulation in leaves and 
expression of CAM. Free-proline accumulation in leaves 
serve as osmoregulation during drought, so as to maintain 

cellular water content that is sufficient to sustain photo-
synthesis. CAM is expressed in both  C3 and CAM orchids 
under drought, which confirms the existence of the plastic-
ity in CAM in the native orchids as an adaptive response 
to drought and moderate light stress, and more work is 
needed to better understand regulation of this CAM activ-
ity by water status and stomatal conductance, as well as 
carbon fixation. This would provide deeper insight into 
CAM expression as an adaptive mechanism to overcome 
environmental stress. With this better understanding, we 
can also improve the methodology and approach in the 
re-introduction of these native orchid species in Singapore 
under natural conditions.
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