
Lin et al. Botanical Studies           (2022) 63:16  
https://doi.org/10.1186/s40529-022-00347-8

ORIGINAL ARTICLE

Effect of nitrogen fertilizer on the resistance 
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Abstract 

Background: Nitrogen is an essential macronutrient for plant growth and development. Crops with a high nitrogen 
input usually have high yields. However, outbreaks of brown planthoppers (Nilaparvata lugens; BPH) frequently occur 
on rice farms with excessive nitrogen inputs. Rice plants carrying BPH resistance genes are used for integrated pest 
management. Thus, the impact of nitrogen on the resistance of rice near‑isogenic lines (NILs) with BPH resistance 
genes was investigated.

Results: We tested these NILs using a standard seedbox screening test and a modified bulk seedling test under dif‑
ferent nitrogen treatments. The amount of nitrogen applied had an impact on the resistance of some lines with BPH 
resistance genes. In addition, three NILs (NIL‑BPH9, NIL‑BPH17, and NIL‑BPH32) were further examined for antibiosis 
and antixenosis under varying nitrogen regimes. The N. lugens nymph population growth rate, honeydew excretion, 
female fecundity, and nymph survival rate on the three NILs were not affected by different nitrogen treatments except 
the nymph survival rate on NIL‑BPH9 and the nymph population growth rate on NIL‑BPH17. Furthermore, in the set‑
tlement preference test, the preference of N. lugens nymphs for IR24 over NIL‑BPH9 or NIL‑BPH17 increased under the 
high‑nitrogen regime, whereas the preference of N. lugens nymphs for IR24 over NIL‑BPH32 was not affected by the 
nitrogen treatments.

Conclusions: Our results indicated that the resistance of three tested NILs did not respond to different nitrogen 
regimes and that NIL‑BPH17 exerted the most substantial inhibitory effect on N. lugens growth and development.
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Background
Host plant resistance is a valuable resource for integrated 
pest management (IPM). Plants with resistance reduce 
not only herbivore damage but also pesticide usage. Anti-
biosis, antixenosis, and tolerance are the three catego-
ries of host plant resistance (Painter 1951; Smith 2005). 
Plants with antibiosis traits affect insect survival, whereas 

plants with antixenosis may influence insect behavior 
(Smith 2005). Plant tolerance is a unique trait in which a 
plant can withstand herbivore damage but does not affect 
insect growth and behavior (Smith 2005). Currently, 
insect-resistant varieties of major crops (rice, wheat, 
etc.) are widely used in IPM programs (Cohen et al. 1997; 
Jlibene and Nsarellah 2011; Nsarellah et al. 2003; Peñal-
ver Cruz et al. 2011).
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The brown planthopper (BPH), Nilaparvata lugens 
(Stål), is the major rice pest threatening rice production. 
N. lugens causes plant mortality symptom “hopper burn” 
and transmits plant viruses, such as grassy and ragged 
stunt viruses. Thirty nine BPH resistance genes in rice 
have been identified (Zhang et al. 2020). Twenty of them 
have been found in rice cultivars, whereas some have 
been identified in wild rice species, such as Oryza aus-
traliensis, O. officinalis, O. minuta, O. rufipogon, O. gla-
berrima, and O. nivara (Du et al. 2020). Furthermore, 14 
BPH genes located on chromosomes 3, 4, 6, and 12 have 
been cloned and characterized (Cheng et  al. 2013; Du 
et al. 2009, 2020; Guo et al. 2018; Ji et al. 2016; Liu et al. 
2015; Ren et  al. 2016; Tamura et  al. 2014; Wang et  al. 
2015; Zhao et al. 2016). For example, BPH9 was found in 
the rice variety Pokkali and encodes a coiled-coil, nucleo-
tide-binding, nucleotide-binding, and leucine-rich repeat 
domain (CC-NB-NB-LRR) protein (Zhao et  al. 2016). 
BPH17 has been found in the rice cultivar Rathu Heenati 
and identified as a cluster of lectin receptor kinases (Liu 
et al. 2015). BPH32 was identified in PTB33 and contains 
a short consensus repeat (SCR) domain (Ren et al. 2016).

In our previous study, twelve near-isogenic lines 
(NILs) carrying one or two BPH resistance gene(s) were 
evaluated for resistance to environmental changes (high 
air temperature and high carbon dioxide concentra-
tion) (Kuang et  al. 2021). Two of nine NILs with a sin-
gle BPH resistance gene (BPH17 and BPH20) and two 
of three NILs pyramided with two BPH resistance genes 
(BPH9 + 32 and BPH18 + 32) maintained resistance 
against N. lugens under environmental changes (Kuang 
et  al. 2021). Furthermore, NIL-BPH17 exerted a strong 
inhibitory effect on N. lugens growth and development 
despite the environmental changes. In addition, plants 

with the BPH17 resistance gene show resistance against 
the white-back planthopper [Sogatella furcifera (Hor-
váth)] (Liu et  al. 2015). BPH resistance genes are cur-
rently used in breeding programs for insect-resistant rice 
(Du et al. 2020; Jena et al. 2017; Nguyen et al. 2019; Xiao 
et al. 2016).

Since insect herbivores mainly obtain nutrients from 
host plants, the resource availability of the host plant is 
the main factor affecting insect herbivore growth and 
development (Awmack and Leather 2002). Nitrogen is 
an essential macronutrient for plant growth and devel-
opment. Generally, crops with high nitrogen input have 
high production. However, nitrogen is also the limiting 
nutrient for insect herbivores. Insect herbivores feed-
ing N-enriched host plants show enhanced fitness (Lu 
and Heong 2009; Lu et  al. 2004; Prestidge 1982; Wier 
and Boethel 1995). For example, rice water weevils (Lis-
sorhoptrus oryzophilus) feeding on high-nitrogen-treated 
plants showed increased adult feeding and oviposition 
preferences (Jiang and Cheng 2003). Furthermore, to 
obtain sufficient nitrogen, the midgut of Lepidoptera can 
digest large amounts of plant proteins, including Rubisco 
(Bhardwaj et al. 2014).

N. lugens outbreaks frequently occur on rice farms 
with excessive nitrogen input (Visarto et  al. 2001). By 
increasing the host plant’s nitrogen content, insects may 
obtain sufficient nutrients to overcome plant resistance. 
Thus, we aimed to determine whether N. lugens feed-
ing on rice plants with BPH resistance genes under high 
nitrogen input would overcome resistance. Therefore, 
we used twelve NILs with BPH resistance genes devel-
oped by the International Rice Research Institute (IRRI) 
to evaluate the impacts of nitrogen on resistance (Jena 
et  al. 2017). These NILs were assessed by the standard 

Table 1 Two‑way ANOVA of the SSST results of NIL responses to factors

a N0, N50, N200
b TN1, IR24, NIL-BPH4, NIL-BPH9, NIL-BPH10, NIL-BPH17, NIL-BPH18, NIL-BPH20, NIL-BPH21, NIL-BPH26, NIL-BPH32, NIL-BPH2 + 32, NIL-BPH18 + 32, NIL-BPH9 + 32
ns  no significance, ***p value < 0.001

Source of variation df F value p value

Treatmenta 2 0.4887 0.6148ns

Varietyb 13 24.4085 < 0.0001***

Treatment × variety 26 2.6875 0.0002***

Residuals 102
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seedbox screening test (SSST) and modified bulk seed-
ing test (MBST). Furthermore, three NILs (NIL-BPH9, 
NIL-BPH17, and NIL-BPH32) were tested for antibio-
sis and antixenosis under different nitrogen treatments. 
Such information would provide evidence of the impact 
of nitrogen on BPH resistance genes and further reveal 
candidate BPH resistance genes for IPM programs.

Materials and methods
Plant materials
Taichung Native 1 (TN1), IR24, and twelve NILs with 
one or two BPH resistance genes were used in this study. 
Twelve NILs were initially obtained from the IRRI (Jena 
et al. 2017). IR24, the recurrent parent of the NILs, was 
obtained from the National Plant Genetic Resources 
Center, Taiwan Agricultural Research Institute, Taiwan 
(TARI). The susceptible control TN1 used for the SSST 
was obtained from Dr. Shu-Jen Wang, National Tai-
wan University. Seeds were sterilized with 2% NaOCl 
(CLOROX, California, United States) for 30  min in 
a shaker and further washed with distilled water for 
10 min. The seeds were germinated on a moistened paper 
towel under dark conditions at 37 °C for 2 days.

Environmental setting
In this study, all plants were fertilized with ammonium 
sulfate, single superphosphate, and potassium chloride 
(Taiwan Fertilizer Company, Taiwan) to supply nitro-
gen, phosphate, and potassium, respectively. For nitrogen 
application, equivalent amounts of nitrogen were added 
to reach 0  kg  ha− 1 (denoted N0), 50  kg  ha− 1 (denoted 
N50), 100  kg  ha− 1 (denoted N100), and 200  kg  ha− 1 
(denoted N200). The amounts of phosphate and potas-
sium added were equivalent to 50 kg  ha− 1 and 60 kg  ha− 1, 
respectively. Before planting, basal fertilizer was applied 
at 30% for nitrogen, 100% for phosphate, and 40% for 
potassium. Plants and N. lugens were grown in a walk-in 

chamber with a day/night temperature of 30 °C/25 °C and 
a 12-h light/12-h dark cycle.

Insects
An N. lugens colony (biotype 1) was obtained from the 
Chiayi Agricultural Experimental Station, TARI. N. 
lugens was mass-reared on TN1 seedlings in an insect 
cage (BugBorm-4, Megaview, Taichung, Taiwan) in 
a walk-in chamber with a day/night temperature of 
30 °C/25 °C and a 12-h light/ 12-h dark cycle (L/D).

SPAD value
The leaf chlorophyll contents of the three NILs (NIL-
BPH9, NIL-BPH17, and NIL-BPH32) and IR24 were 
measured by a Soil Plant Analysis Development chloro-
phyll meter (SPAD 502 Plus Chlorophyll Meter 2900P, 
Konica Minolta, Osaka, Japan).

The SPAD is the alternative approach to measure the 
chlorophyll content without damaging leaf tissues. The 
average readings from the tip, middle, and base of the 
youngest expanded leaf of a 30-day-old rice plant were 
calculated. Each treatment included five replicate plants, 
and the experiment was repeated three times.

Standard seedbox screening test (SSST) and modified bulk 
seeding test (MBST)
Twelve NILs, IR24, and the susceptible control TN1 
treated with different nitrogen applications (N0, N50, and 
N200) were evaluated for insect resistance by the SSST 
and MBST. Briefly, 24 seeds of each tested NIL/variety 
were sown in a row, and 20 seedlings were selected for 
the test. Fourteen days after sowing, 2nd-  to 3rd-instar 
N. lugens were applied to the seedlings (8–10  N. lugens 
per seedling). For the SSST, the damage level was meas-
ured according to the standard evaluation system (IRRI 
2013) when the susceptible control TN1 was dead. For 
the MBST, the seedling survival evaluation scale followed 

Table 3 Two‑way ANOVA of the MBST results of NIL responses to factors

a N0, N50, N200
b TN1, IR24, NIL-BPH4, NIL-BPH9, NIL-BPH10, NIL-BPH17, NIL-BPH18, NIL-BPH20, NIL-BPH21, NIL-BPH26, NIL-BPH32, NIL-BPH2 + 32, NIL-BPH18 + 32, NIL-BPH9 + 32
ns  no significance, ***p value < 0.001

df F value p value

Treatmenta 2 0.6889 0.5045ns

Varietyb 13 18.5636 < 0.0001***

Treatment × variety 26 3.2536 < 0.0001***

Residuals 102
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Jena et al. (2006). These experiments were repeated three 
times.

Population growth rate (PGR), honeydew excretion, 
fecundity, egg hatchability, survival rate, and settlement 
preference of N. lugens
Quantification of the PGR, honeydew excretion, fecun-
dity, egg hatchability, survival rate, and settlement prefer-
ence was performed using methods previously described 
by Kuang et al. (2021). Briefly, germinated seeds of three 
NILs (NIL-BPH9, NIL-BPH17, and NIL-BPH32) and 
IR24 were transferred to 150 ml glass beakers contain-
ing Kimura B solution (Yoshida et al. 1971). After seven 
days, the seedlings were transferred into plastic pots (one 
plant per pot) with paddy soil treated with basal fertilizer 
application. Three nitrogen applications (N50, N100, and 
N200) were applied in these experiments. At 30 days 
after germination, all branches except the main tiller 
were removed. The sample size (n) and the number of 
replicates (N) in most of the assays were N = 3 and n = 5, 
respectively; however, in the honeydew excretion assay, 
these values were N = 4 and n = 5, and in the settlement 
preference test, these values were n = 500.

Statistical analysis
All the data were analyzed using R software (v 4.0.5) 
(Team 2013). The SSST and MBST results were analyzed 

by two-way ANOVA, and the PGR, honeydew excretion, 
fecundity, egg hatchability, and survival rate data were 
analyzed by one-way ANOVA. The least significant dif-
ference test was used to detect differences at p < 0.05. In 
the multiple comparison procedure, Bonferroni’s correc-
tion method was applied to control the familywise error 
rate (FWER) to ensure a lower value than the nominal 
level of 0.05. The settlement preference data were ana-
lyzed using the standard z-test to evaluate whether or not 
N. lugens nymphs had settlement preference. Specifically, 
if they had no preference and selected the plants ran-
domly, then the proportions of choosing IR24 and NIL-
BPH9/17/32 would be equal to 0.5.

Results
SSST with different nitrogen treatments
Twelve NILs and their recurrent parent IR24 were evalu-
ated for the impact of different nitrogen treatments on 
resistance against N. lugens using an SSST. The dam-
age scores of the experimental plants were affected 
by the variety and treatment x variety interaction (p 
value < 0.001; Table  1). Under the no-nitrogen regime 
(N0), 9 NILs (NIL-BPH4, NIL-BPH9, NIL-BPH17, NIL-
BPH20, NIL-BPH26, NIL-BPH32, NIL-BPH2 + 32, NIL-
BPH9 + 32, and NIL-BPH18 + 32) had a lower damage 
score than IR24, whereas 3 NILs (NIL-BPH10, NIL-
BPH18, and NIL-BPH21) had similar scores to IR24 

Fig. 1 The SPAD values of IR24, NIL‑BPH9, NIL‑BPH17, and NIL‑BPH32 under different nitrogen regimes (N50, N100, and N200). Means in each column 
followed by the same capital letter do not differ significantly among varieties (p < 0.05). Means in each column followed by the same lowercase 
letter do not differ significantly among different nitrogen treatments. The error bars indicate the S.Es
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(Table 2). Under the low-nitrogen regime (N50), 9 NILs 
(NIL-BPH4, NIL-BPH9, NIL-BPH17, NIL-BPH18, NIL-
BPH20, NIL-BPH32, NIL-BPH2 + 32, NIL-BPH9 + 32, 
and NIL-BPH18 + 32) had a lower damage score than 
IR24, whereas 3 NILs (NIL-BPH10, NIL-BPH21, and 
NIL-BPH26) had similar scores to IR24 (Table 2). Under 

the high-nitrogen regime (N200), 8 NILs (NIL-BPH9, 
NIL-BPH17, NIL-BPH20, NIL-BPH21, NIL-BPH32, NIL-
BPH2 + 32, NIL-BPH9 + 32, and NIL-BPH18 + 32) had 
a lower damage score than IR24, whereas 3 NILs (NIL-
BPH4, NIL-BPH10, and NIL-BPH18) had similar scores 
to IR24 (Table 2). In addition, NIL-BPH26 had a higher 

Fig. 2 Areas of honeydew excretion of N. lugens females feeding on IR24, NIL‑BPH9, NIL‑BPH17, and NIL‑BPH32 under different nitrogen regimes. 
a Phloem‑derived excretion. b Xylem‑derived excretion. Means in each column followed by the same capital letter do not differ significantly among 
varieties (p < 0.05). Means in each column followed by the same lowercase letter do not differ significantly among different nitrogen treatments. The 
error bars indicate the S.Es
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Fig. 3 Population growth rate of N. lugens nymphs feeding on IR24, NIL‑BPH9, NIL‑BPH17, and NIL‑BPH32 under different nitrogen regimes. Means in 
each column followed by the same capital letter do not differ significantly among varieties (p < 0.05). Means in each column followed by the same 
lowercase letter do not differ significantly among different nitrogen treatments. The error bars indicate the S.Es

Fig. 4 Nymph survival rate of N. lugens feeding on IR24, NIL‑BPH9, NIL‑BPH17, and NIL‑BPH32 under different nitrogen regimes. Means in each 
column followed by the same capital letter do not differ significantly among varieties (p < 0.05). Means in each column followed by the same 
lowercase letter do not differ significantly among different nitrogen treatments. The error bars indicate the S.Es
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damage score than IR24 under N200. Compared with the 
N0 and N200 regimes, one NIL (NIL-BPH21) and IR24 
showed variation in their resistance levels (Table 2). IR24 
and NIL-BPH21 showed no resistance under N0 and 
N50 but gained resistance under N200. Overall, 4 NILs 
carrying a single BPH resistance gene (NIL-BPH9, NIL-
BPH17, NIL-BPH20, and NIL-BPH32) and 3 NILs with 
gene pyramiding (NIL-BPH2 + 32, NIL-BPH9 + 32, and 
NIL-BPH18 + 32) maintained their resistance under dif-
ferent nitrogen treatments.

MBST with different nitrogen treatments
The resistance score of the tested plants was affected 
by the variety and treatment x variety interaction (p 
value < 0.001; Table  3). Under the no-nitrogen treat-
ment (N0), 7 NILs (NIL-BPH9, NIL-BPH17, NIL-BPH20, 
NIL-BPH32, NIL-BPH2 + 32, NIL-BPH9 + 32, and NIL-
BPH18 + 32) had a higher resistance score than IR24, 
whereas 5 NILs (NIL-BPH4, NIL-BPH10, NIL-BPH18, 
NIL-BPH21, and NIL-BPH26) had a lower survival 
rate similar to IR24 (Table  4). Under the low-nitrogen 

treatment (N50), 7 NILs (NIL-BPH4, NIL-BPH9, NIL-
BPH17, NIL-BPH32, NIL-BPH2 + 32, NIL-BPH9 + 32, 
and NIL-BPH18 + 32) had a higher resistance score than 
IR24, and 5 NILs (NIL-BPH10, NIL-BPH18, NIL-BPH20, 
NIL-BPH21, and NIL-BPH26) had a lower survival rate 
similar to IR24 (Table 4). Under the high-nitrogen treat-
ment (N200), 8 NILs (NIL-BPH4, NIL-BPH17, NIL-
BPH20, NIL-BPH21, NIL-BPH32, NIL-BPH2 + 32, 
NIL-BPH9 + 32, and NIL-BPH18 + 32) had a higher 
resistance score than IR24, whereas 4 NILs (NIL-BPH9, 
NIL-BPH10, NIL-BPH18, and NIL-BPH26) had a lower 
survival rate similar to IR24 (Table  4). Compared with 
the N0 and N200 regimes, two NILs (NIL-BPH4 and 
NIL-BPH21) showed variation in their resistance levels 
(Table 4). NIL-BPH4 and NIL-BPH21 showed no resist-
ance under the N0 and N50 regimes but gained resist-
ance under the N200 regime. Overall, 2 NILs carrying a 
single BPH resistance gene (NIL-BPH17 and NIL-BPH32) 
and 3 NILs with gene pyramiding (NIL-BPH2 + 32, NIL-
BPH9 + 32, and NIL-BPH18 + 32) maintained their 
resistance under nitrogen treatments.

Fig. 5  N. lugens female fecundity on IR24, NIL‑BPH9, NIL‑BPH17, and NIL‑BPH32 under different nitrogen regimes. Means in each column followed 
by the same capital letter do not differ significantly among varieties (p < 0.05). Means in each column followed by the same lowercase letter do not 
differ significantly among different nitrogen treatments. The error bars indicate the S.Es

(See figure on next page.)
Fig. 6 Choice test of N. lugens nymphs on IR24 and NIL‑BPH9 under different nitrogen regimes. a N50. b N100. c N200. The asterisks indicate 
differences between IR24 and NIL‑BPH9 as *p < 0.05; **p < 0.01; ***p < 0.001; ns no significance
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Fig. 6 (See legend on previous page.)
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Resistance of NIL-BPH9, NIL-BPH17, and NIL-BPH32 
under nitrogen treatments
Based on the above data, three NILs (NIL-BPH9, NIL-
BPH17, and NIL-BPH32) were selected to test for anti-
biosis and antixenosis effects under different nitrogen 
applications. The PGR, honeydew excretion, fecundity, 
egg hatchability, and survival rate were used to test for 
antibiosis effects, while a settlement preference test was 
used to test for an antixenosis effect. Nitrogen is the main 
factor affecting crop yield. No nitrogen application (N0) 
is not applicable in farming practices. Thus, three nitro-
gen treatments (N50, N100, and N200) were selected to 
study the effects further. The chlorophyll content of NIL-
BPH9, NIL-BPH17, and NIL-BPH32 under the nitrogen 
treatments was measured. The SPAD value was not dif-
ferent among the tested plants with the same nitrogen 
treatment (Fig. 1). However, all tested varieties had higher 
SPAD values under the N200 treatment than under the 
other two nitrogen regimes (N50 and N100), except NIL-
BPH17 and NIL-BPH32 under the N100 regime (Fig. 1).

A honeydew excretion assay was implemented as an 
indirect method to examine the phloem and xylem sap 
consumption of N. lugens. For phloem-derived honey-
dew, N. lugens feeding on NIL-BPH17 had lower phloem 
sap consumption than N. lugens feeding on IR24 under 
all nitrogen treatments, while N. lugens feeding on NIL-
BPH9 and NIL-BPH32 had lower phloem sap consump-
tion than N. lugens feeding on IR24 under the N200 
treatment (Fig.  2a). Among the nitrogen treatments, no 
difference was found among N. lugens feeding on NIL-
BPH9, NIL-BPH17, and NIL-BPH32 (Fig. 2a). For xylem-
derived honeydew, N. lugens feeding on NIL-BPH9 and 
NIL-BPH17 had a lower xylem sap consumption than 
N. lugens feeding on IR24 under the N100 treatment 
(Fig. 2b). N. lugens feeding on IR24 under the N100 treat-
ment had higher xylem sap consumption than that under 
the N50 treatment, whereas no difference was found 
among N. lugens feeding on NIL-BPH9, NIL-BPH17, and 
NIL-BPH32 (Fig. 2b).

The PGR was used as the growth parameter of N. 
lugens. There was no difference between IR24 and 
NIL-BPH9 or NIL-BPH32 under any nitrogen treat-
ments (Fig.  3). However, N. lugens had a lower PGR on 

NIL-BPH17 than on IR24 under the N50 and N200 treat-
ments but similar PGRs on NIL-BPH17 and IR24 under 
the N100 treatment (Fig. 3). In addition, N. lugens feed-
ing on NIL-BPH17 had a lower PGR under the N50 and 
treatment than under the N100 treatment, whereas no 
difference was found among IR24, NIL-BPH9, and NIL-
BPH32 under any treatment (Fig. 3). The nymph survival 
rate of N. lugens on these NILs under different nitrogen 
treatments was further examined. N. lugens nymphs on 
NIL-BPH17 had a lower survival rate than those on IR24 
under the N200 treatment, whereas no difference was 
found among IR24, NIL-BPH9, and NIL-BPH32 under 
any of the treatments (Fig. 4). Within the same variety, N. 
lugens nymphs feeding on IR24 under the N200 regime 
had a higher survival rate than those feeding on IR24 
under low nitrogen application (N50 and N100 treat-
ments), whereas there was no difference with NIL-BPH17 
and NIL-BPH32 (Fig. 4).

Using a no-choice assay, female fecundity under differ-
ent nitrogen applications was examined. N. lugens female 
adults on NIL-BPH32 had lower fecundity than those 
on IR24 under the N100 treatment, whereas N. lugens 
female adults on NIL-BPH17 had lower fecundity than 
those on IR24 under all nitrogen treatments (Fig.  5). In 
the settlement preference test, N. lugens nymphs pre-
ferred settling on IR24 over NIL-BPH9 from 48 to 120 h 
under the N50 treatment (Fig. 6a). Under the N100 and 
N200 treatments, N. lugens nymphs preferred IR24 from 
3 to 120 h, except at the 48-h time point under the N200 
treatment (Fig.  6b, c). When comparing IR24 and NIL-
BPH17, N. lugens nymphs preferred IR24 at 120 h under 
the N50 treatment and preferred IR24 at 24 h under the 
N100 and N200 treatments (Fig. 7). For comparing IR24 
and NIL-BPH32, N. lugens nymphs preferred IR24 from 
3 to 120 h under all nitrogen treatments except the 3 and 
120 h time points under the N100 treatment (Fig. 8).

Discussion
Plants with insect resistance traits are keys to IPM pro-
grams. Since BPH-resistant rice varieties have been used 
in the market, the environmental impact on their resist-
ance has been noticed (Horgan et  al. 2021; Kuang et  al. 
2021). Nitrogen input is highly correlated with crop yield. 

Fig. 7 Choice test of N. lugens nymphs on IR24 and NIL‑BPH17 under different nitrogen regimes. a N50. b N100. c N200. The asterisks indicate 
differences between IR24 and NIL‑BPH17 as *p < 0.05; **p < 0.01; ***p < 0.001; ns no significance

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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However, excessive nitrogen input may not increase 
crop production but instead benefit insect pests. There-
fore, the amount of nitrogen input should be appropri-
ate and considered in the IPM program. In this study, we 
examined twelve NILs with BPH resistance genes under 
different nitrogen regimes. Three NILs (NIL-BPH9, NIL-
BPH17, and NIL-BPH32) maintained a low damage score 
under varying nitrogen applications. High nitrogen input 
would increase the SPAD value, the indicator of chloro-
phyll content, in the leaf tissues. Based on the N. lugens 
growth parameters, the resistance of the three tested 
NILs did not respond to different nitrogen regimes, 
whereas NIL-BPH17 exerted the strongest inhibitory 
effect on N. lugens growth and development.

The fitness of N. lugens increases with increases in 
the plant nitrogen content in rice (Lu et al. 2004; Rashid 
et  al. 2016, 2017a, b). Increasing the soil nitrogen level 
increases the survival rate and weight of N. lugens 
nymphs and shortens their developmental period (Hor-
gan et al. 2016, 2018; Rashid et al. 2017b). Some of these 
results were consistent with those of our study (Fig. 4). In 
addition, the biomass of N. lugens nymphs on a suscepti-
ble variety (T65) increased under a high-nitrogen regime 
(Srinivasan et al. 2015). The impact of nitrogen on the fit-
ness of N. lugens adults is not conclusive. The adult lon-
gevity, fecundity, hatchability, weight, and survival rate 
of N. lugens increases with increases in the nitrogen con-
tent of the host plants (Rashid et al. 2016, 2017b). How-
ever, Horgan et al. (2016) reported that nitrogen fertilizer 
treatments did not affect fecundity or egg mortality. 
Our study supports the last finding. In addition, under 
a high-nitrogen regime, N. lugens fecundity increased 
across generations (Lu et  al. 2004). This study revealed 
that N. lugens outbreaks may frequently occur in nitro-
gen-enriched crops (Lu et  al. 2004; Horgan et  al. 2021) 
reported that increasing nitrogen input would reduce 
resistance in rice but enhance its tolerance to N. lugens. 
Our study yielded similar results on IR24 (Table 2). How-
ever, in our study, N. lugens feeding on three tested NILs 
(NIL-BPH9, NIL-BPH17, and NIL-BPH32) under high 
nitrogen input did not overcome the resistance. These 
results indicated that these three BPH resistance genes 
would benefit rice breeding programs.

Breeding insect-resistant varieties with insect resist-
ance genes is an effective and environmentally friendly 

strategy for IPM programs. Several technologies, includ-
ing marker-assisted selection and gene editing, acceler-
ate the breeding process. BPH resistance genes have been 
developed in several rice varieties, such as 9311, IR24, and 
T65 (Jena et al. 2017; Nguyen et al. 2019; Xiao et al. 2016). 
Furthermore, NILs with resistance to other phloem feed-
ers, including the white-backed planthopper (S. furcifera), 
gall midge (Orseolia oryzae), and green rice leafhopper (N. 
cincticeps), have also been developed (Fujita et  al. 2010; 
Himabindu et  al. 2010; Yamasaki et  al. 2003). However, 
because N. lugens has multiple biotypes and is prone to 
adaptation, rice varieties with a single resistance gene may 
show a reduction in resistance within a few years (Jena and 
Kim 2010). Furthermore, several BPH resistance genes lose 
their efficacy under environmental changes (Kuang et  al. 
2021). Thus, pyramiding multiple genes would be a better 
strategy. It has been reported that pyramided genes have a 
synergistic effect (Hu et al. 2013; Jena et al. 2017; Qiu et al. 
2012). In our study, under N0 treatment, NIL-BPH9 + 32 
and NIL-BPH18 + 32 had lower damage scores in the SSST 
and higher resistance in the MBST than the NILs with a 
single resistance gene (BPH9, BPH18, and BPH32). Fur-
thermore, NIL-BPH9 + 32 and NIL-BPH18 + 32 showed 
a similar trend under environmental change (Kuang et al. 
2021). Thus, pyramiding genes in one variety not only 
prevents the loss of efficacy but also enhances resistance 
to environmental changes, including climate change and 
varying nitrogen inputs.

Climate change impact and excessive nitrogen input 
are the two critical challenges to our crop production. 
Therefore, we would like to use this unique NIL set to 
find out BPH genes that would maintain the resistance 
under stress. Based on the findings of this study and 
our previous results, NIL-BPH17 maintained resistance 
against N. lugens under not only environmental changes 
(high atmospheric temperature and high  CO2 concentra-
tion) but also varying nitrogen applications (Kuang et al. 
2021). Furthermore, our results showed that increasing 
the nitrogen level enhanced the preferences of N. lugens 
for IR24 from 120 h to 24 h after the experiment (Fig. 7). 
In addition, with environmental changes, the preferences 
of N. lugens nymphs for IR24 and NIL-BPH17 accelerated 
from 24 h to 6 h after the experiment (Kuang et al. 2021). 
Thus, BPH17 may be the best BPH resistance gene for 
insect resistance breeding programs in rice.

(See figure on next page.)
Fig. 8 Choice test of N. lugens nymphs on IR24 and NIL‑BPH32 under different nitrogen regimes. a N50. b N100. c N200. The asterisks indicate 
differences between IR24 and NIL‑BPH32 as *p < 0.05; **p < 0.01; ***p < 0.001; ns no significance
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Fig. 8 (See legend on previous page.)
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Conclusions
The impact of nitrogen on the resistance of twelve NILs 
with BPH resistance genes against N. lugens was exam-
ined. Nitrogen input affected some of the tested lines 
with BPH resistance genes. However, three NILs (NIL-
BPH9, NIL-BPH17, and NIL-BPH32) did not show 
changes in resistance with different nitrogen regimes, 
while NIL-BPH17 had the strongest inhibitory effect on 
N. lugens growth and development. These results provide 
valuable information for IPM programs.
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