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Abstract 

Background  The analysis of genetic diversity of protected plant species can greatly support conservation efforts. 
Plantago maxima Juss. ex Jacq. is a perennial species distributed along the Eurasian steppe. The westernmost range 
edge of the species’ distribution is located in the Pannonian basin, in Hungary where it is represented by a few, frag-
mented and highly endangered populations. We studied population diversity of all Hungarian range edge, natural 
populations, and one established ex situ population. One population from the centre of distribution (Kazakhstan) was 
implemented in the cpDNA haplotype study to compare the peripheral vs. central populations. We performed mor-
phometric trait-based analysis, chromosome studies (morphometric analyses and FISH) and genetic diversity evalua-
tions using inter simple sequence repeats (ISSR) and cpDNA trnL-trnF to evaluate differences between the in situ and 
ex situ populations as well as central vs. peripheral populations.

Results  Our results showed no obvious morphological differences among the in situ and ex situ populations in the 
period between 2018 and 2020. One ex situ subpopulation develops flowers three years in a row from 2019, which 
is a favourable indicator of the introduction success. Hungarian populations are exclusively diploids (2n = 2x = 12). 
The karyogram consists of 5 metacentric and 1 acrocentric chromosome pair. Plantago maxima has one 35S and 
two 5S rDNA loci, located on the acrocentric chromosome pair. Eight variable ISSR primers yielded 100 fragments, of 
which 74.6% were polymorphic (mean He = 0.220). A high level of genetic variation within population was observed 
(92%) while the genetic differentiation among the populations was only 8%. STRU​CTU​RE analysis revealed that the 
largest Kunpeszér population separated from the rest of the Hungarian populations, indicating a high rate of admix-
ture among the other ones. Based on the trnL-trnF sequence analysis the Hungarian populations represent a single 
haplotype, which can indicate a reduced diversity due to isolation and recent population decline. By contrast, Kazakh 
population represents a distinct haplotype compared to the Hungarian samples.

Conclusions  The present study draws the attention to the high conservation value of the Plantago maxima popula-
tions from the westernmost range edge of the species’ distribution.
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Background
It has been emphasized since long time that preserving 
genetic diversity of endangered species can significantly 
affect the long-term survival and evolution in changing 
environments (Frankham 2003). In situ or on-site conser-
vation is to protect, manage and monitor a target species’ 
population within its natural habitat (Heywood 2014). Ex 
situ conservation is the other possible tool for the preser-
vation of endangered and rare plant species. One of the 
primary goals of this method is to preserve genetic vari-
ation and representativeness outside the species’ native 
habitat (Maunder and Byers 2005; Volis and Blecher 
2010). Moreover efficient ex situ conservation strategies 
require information on the genetic variation and struc-
ture of the target species (Brown and Briggs 1991; Brown 
and Marshall 1995; Pupin et al. 2019) supplemented with 
adaptive traits variation (Volis and Blecher 2010). Studies 
on population diversity and genetic structure of endan-
gered species are therefore urgently needed to promote 
effective conservation and management activities (Wu 
et al. 2015).

The cosmopolitan Plantago genus (Plantaginaceae) is 
5–18.5 Million years old (Rønsted et al. 2002; Cho et al. 
2004; Iwanycki Ahlstrand et al. 2019) and comprises over 
250 species which are distributed in the temperate and 
high-elevation tropical regions (Rahn 1996; Rønsted et al. 
2002; Li et  al. 2011). One of the strictly protected spe-
cies growing in Hungary is the perennial giant plantain 
(Plantago maxima Juss. ex Jacq). Plantago maxima is the 
member of subg. Plantago and sect. Lamprosantha (Has-
semer et al. 2019; Mower et al. 2021). The species has a 
Eurasian continental distribution (Soó 1968; Vidéki and 
Máté 2003). The range of the species extends through 
Eastern Europe to West Asia (Grigoriev 1958; Vidéki and 
Máté 2003). In Europe beside the Hungarian populations 
the species has one more isolated locality in Bulgaria 
(Tzonev and Karakiev 2007). With its four remaining 
and isolated peripheral populations in Hungary the spe-
cies reaches the westernmost limit of its distribution area 
(Vidéki and Máté 2003; Kovács et al. 2018). The increas-
ing fragmentation of the natural populations in Hungary 
and populations’ decline was induced in the twentieth 
century by the water regulation, intensified agricultural 
land use, herbal overcollection and fires resulting from 
military firing exercises (Vidéki and Máté 2003; Molnár-
Baji 2013; Kovács et al. 2018). All these impacts threaten 
the long-term survival of the peripheral giant plantain 
populations. The Kunpeszér population is the largest, 
consisting approx. 2000 individuals located in the site 
of the Kiskunság National Park Directorate. The other 
three populations (Kakucs, Táborfalva and Tatárszent-
györgy) that belong to the Danube-Ipoly National Park 
Directorate are smaller and are even more fragmented 

and isolated, comprising fewer individuals. Therefore, 
the establishment of ex situ collection was a high prior-
ity. Seeds collected from the Kakucs area in 2015 were 
used for the ex situ stock establishment. Germination 
was accompanied by biological and morphological stud-
ies (Kovács et al. 2018; Kovács et al. 2019). The ex situ site 
was selected according to the habitat type and species 
composition from where the seeds originated. Ex situ 
plantlets were introduced on the Molinia fen meadow of 
the Soroksár Botanical Garden in 2016.

Basic chromosome number of Plantago sp. is 4, 5 and 
6 (Peruzzi and Cesca 2002; Dhar et  al. 2006; Shahriari 
et  al. 2018). The majority of Plantago species are dip-
loids, however, tetraploids, hexaploids, octoploids, deca-
ploids, dodecaploids, and 16-ploids are also reported 
(Dhar et  al. 2006; Wong and Murray 2014). Previously, 
it was reported that P. maxima is tetraploid 2n = 4x = 24 
(Magulaev 1982). In contrast Soó (1970) and Rahn (1996) 
reported diploid level (2n = 2x = 12) for Plantago max-
ima which emphasizes the need to evaluate the chromo-
some number of the living Hungarian populations.

Mapping of rDNA loci using fluorescence in  situ 
hybridization can be used to determine phylogenetic 
relationships in the Plantago genus (Dhar et  al. 2006). 
Until this study the chromosomal position of 35S and 5S 
rDNA loci has been investigated for fewer than 10 Plan-
tago species, exhibiting from one to two 5S rDNA loci 
and from one to two 35S rDNA loci (Dhar et  al. 2006, 
2017; Wong and Murray 2014). rDNA loci number and 
position is so far unknown for P. maxima.

Inter-simple sequence repeat (ISSR) polymorphism 
requires no prior knowledge of the DNA sequence and 
evolve rapidly enough to exhibit variation, therefore 
ISSRs are universally applicable as dominant markers 
even for exploring new species (Sa et al. 2011; González-
López et al. 2014).

ISSRs have been widely and successfully used for 
genetic mapping and for evaluating population genetic 
variation in different Plantago species. Five to 25 ISSR 
primers were used, and the average polymorphism 
resulted between 56.67 and 83.83% (De Vita et al. 2009; 
Ferreira et  al. 2013; Rahimi et  al. 2017; Osman and 
Abedin 2019; Bagheri et al. 2022).

Chloroplast DNA (cpDNA) markers are widely used 
for taxonomic and phylogenetic comparisons (Shaw 
et  al. 2007). In turn ISSRs with high rate of polymor-
phism could lead to a better resolution at intraspecific 
level. While cpDNA sequences are more slowly mutat-
ing represent a different time horizon (Kropf et al. 2020). 
Due to the knowledge gap of the whole genome of Plan-
tago maxima and lack of a priori knowledge of DNA 
sequences ISSR and cpDNA markers were chosen in our 
analysis.
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The goal of this study was to (1) evaluate the morpho-
logical trait variation of the Hungarian populations and 
the genetic representativeness of the ex situ stock; (2) 
give detailed information about the chromosome num-
ber and rDNA localisation; (3) assess the level of genetic 
diversity of both in situ and ex situ Hungarian Plantago 
maxima populations; (4) evaluate the possible haplotype 
differences using a cpDNA marker between a central vs 
edge populations.

Methods
Study sites and plant material
Four in  situ and one ex situ populations of P. maxima 
were included in the analysis from Hungary (Fig. 1). Mor-
phometric measurements were conducted between 2018 
and 2020 at the time of main flowering. The seed and leaf 
sampling for chromosome and genetic diversity studies 
was carried out in 2019 and 2020. The four in situ pop-
ulations are located in Molinia meadows (Fig.  1). These 
sites are fragmented and are isolated from each other. 
The Soroksár Botanical Garden holds a natural Molinia 
meadow site, which proved to be optimal for the ex situ 
conservation of the giant plantain. Three ex situ subpop-
ulations were established in 2016 and the habitat prefer-
ence of the species was evaluated. Based on the species 
composition, and the water regime we observed differ-
ences among the three sites (Kovács et al. 2019).

One population from the central part of the species 
distribution range from Kazakhstan was implemented in 
the study, to compare population haplotypes between the 
edge and central locality. The received plant material was 
not applicable for morphometric, chromosome and ISSR 
study, therefore were only used for the cpDNA survey. 
Altogether four Hungarian and one Kazakh in  situ, and 
one Hungarian ex situ populations of Plantago maxima 
were included in the cpDNA study (Fig. 1). The detailed 
information about the populations is listed in Table 1.

Morphometric characteristics and data analysis
In 2018–2020, yearly, morphometric parameters, individ-
ual growth of the in situ and ex situ populations and sub-
populations were monitored. 13–20 individuals from the 
five Hungarian localities (4 in situ, 1 ex situ) were meas-
ured with a measuring tape. The observed traits were as 
follows: biggest leaf length, biggest leaf width, number 
of leaves. The generative parameters were not assessed, 
since the first flowers appeared in the ex situ stock in 
2019, but in statistically non-significant quantities. How-
ever, the flowering individuals were monitored during the 
years to evaluate the background factors necessary for 
the development of generative organs.

Statistical analysis was carried out using IBM 
SPSS Statistics 27 software. Multivariate ANOVA 

(MANOVA) model was used to evaluate statistical dif-
ferences between populations. Morphological traits as 
factors and years were treated as blocks in the model. 
Wilk’s lambda as unexplained variance rate was tested. 
Normality of the residuals was proved according to 
their skewness and kurtosis (D’Agostino et  al. 1990; 
Tabachnick and Fidell 2013; p > 0.05). In case of the 
number of leaves normality was violated, therefore ln 
transformation (λ = −  0.3) was used. Homogeneity of 
variances was tested by Levene’s method. Populations 
were separated by Games–Howell’s or Tukey’s post hoc 
tests depending on whether homogeneity assumption 
was violated or not.

Chromosome analyses and fluorescence in situ 
hybridization (FISH)
Seeds were collected from the four Hungarian in  situ 
populations in 2019. Ploidy level from pooled seed 
samples, from 9 to 23 individuals per population were 
determined. Chromosome numbers were counted from 
mitotic metaphases from root tips using classical squash 
methods according to Mlinarec et  al. (2006) with some 
modifications. Briefly, root tips were pretreated with ice-
cold water at room temperature for 24 h, fixed in 3: 1 (v/ 
v) ethanol/acetic acid at 4 °C for 24–48 h and stored until 
use. Chromosomes were stained with antifade buffer 
Vectashield (Vector Laboratories, Peterborough, UK) 
containing DAPI counterstain (2 μg  ml−1) and stored at 
4  °C. Photographs were taken with an Olympus BX51 
microscope, equipped with a highly sensitive digital cam-
era (Olympus DP70).

Chromosome preparations for fluorescent in  situ 
hybridization (FISH) were conducted according to Mlin-
arec et al. (2019). Briefly, the clone pTa794, containing the 
complete 410-bp BamHI fragment of the 5S rRNA gene 
and the spacer region of wheat (Gerlach and Dyer 1980), 
was used as the 5S rDNA probe. The 2.4-kb HindIII frag-
ment of the partial 18S rDNA and ITS1 from Cucurbita 
pepo, cloned into pUC19 (Torres-Ruiz and Hemleben 
1994), was used as the 35S rDNA probe. The hybridisa-
tion mixture (20 μL) containing 50% formamide, 10% 
dextran sulphate, 0.6% sodium dodecyl sulphate, 2 × SSC 
and 2 ng μl−1 of labelled probe was denatured at 96 °C for 
3 min. Chromosome preparations denatured at 71 °C for 
5 min after applying the hybridisation mixture. Stringent 
washes were performed at 42  °C in the following solu-
tions: 2 × SSC, 0.1 × SSC, 2 × SSC, 4 × SSC⁄Tween (5 min 
each). The preparations were mounted in antifade buffer 
Vectashield (Vector Laboratories, Peterborough, UK) 
containing DAPI counterstain (2 ug ml−1) and stored at 
4  °C until use. Signals were visualised and photographs 
captured with an Olympus BX51 microscope, equipped 
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Fig. 1  The map of the sampled populations of Plantago maxima in Hungary and Kazakhstan (A). The Hungarian localities are presented in better 
resolution B in a terrain map (source: https://​rstud​io.​github.​io/​leafl​et/)

https://rstudio.github.io/leaflet/
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with a highly sensitive digital camera (Olympus DP70). 
Images were merged and contrasted using Adobe Pho-
toshop 22.5.4. An average of 10 well-spread metaphases 
were analysed for each individual.

DNA extraction and PCR amplification
Leaves were collected and stored in silica gel until use. 
DNA was extracted with E.Z.N.A.® SP Plant DNA kit 
(Omega Bio-tek, Inc., Norcross, GA, USA) following the 
manufacturer’s recommendations. DNA concentration 
and quality was assessed using NanoDrop (BioScience, 
Hungary).

ISSR analysis and genetic structure
We performed 15.5 μL PCR reactions with 1 μL of 
genomic DNA, 10.72 μL of Milli-Q ultrapure water 
(Merck Millipore, Billerica, MA, USA), 1.5 μL of (10x) 
DreamTaq Green PCR buffer (ThermoFisher, Waltham, 
MA, USA), 0.3 μL of (10  mmol·L–1) dNTP mix (Ther-
moFisher, Waltham, MA, USA), 0.5 μL of (2.5 mmol·L–1) 
MgCl2, 0.5–0.5 μL (10  mmol·L–1) of each primer, and 
0.03 μL of DreamTaq Green DNA polymerase (Ther-
moFisher, Waltham, MA, USA), 0.15 μL BSA (1%) (Ther-
moFisher) and 0.3 μL DMSO (2%). ISSR primers (Table 2) 

were chosen from the ISSR primer set 9 described at the 
University of British Columbia (http://​www.​micha​elsmi​
th.​ubc.​ca).

Thermocycling conditions were as follows: initial 
denaturation at 94  °C for 5 min; followed by 40 cycles 
of 94  °C for 30  s, 49  °C for 60  s, 72  °C for 90  s; and a 
final synthesis at 72  °C for 7 min. Amplifications were 
performed with an Aeris™ Thermal Cycler (Esco Micro 
Pte. Ltd., Singapore). The PCR products were applied 
on a 1.5% (w/v) ethidium bromide stained agarose 
gel in 1xTBE buffer. PCR products were separated for 
60–150  min at 110  V. Size comparison with external 
standards (Thermo Scientific GeneRuler 100  bp Plus 
DNA Ladder) was evaluated using GelAnalyzer 19.1 
software (Lazar and Lazar 2010). Amplified fragments 
were scored visually for presence (1) or absence (0) of 
homologous bands and the results were summarized in 
MS Excel table. The binary data of ISSR markers were 
analyzed as dominant markers using GenAlEx 6.51b2. 
(Smouse et al. 2017).

The binominal ISSR data matrix was used to cal-
culate a similarity matrix using Jaccard’s coefficients. 
Sequential agglomerative hierarchical non-overlapping 
(SAHN) clustering was employed using unweighted 
pair group method with arithmetic averages (UPGMA) 
method. Cluster analysis based on Nei’s genetic dis-
tances calculated in GenAlex was also carried out 
using the (UPGMA) method. Dendrograms were plot-
ted using NTSYS-pc 2.10 software (Rohlf 1998). Inter-
population structure among the 5 sites was investigated 
using Bayesian clustering with STRU​CTU​RE software 
version 2.3.4 (Pritchard et al. 2000) by testing 10 inde-
pendent runs for a given number of inferred clusters 
K, from K = 1 to 8. STRU​CTU​RE runs consisted of 
500 000 MCMC generations, after a burn-in period of 
100 000 iterations with LOCPRIOR model described 
by Hubisz et al. (2009). We used the admixture ances-
try model under the correlated allele frequency model 
(Falush et  al. 2003). For the optimal value of K in the 

Table 1  Locations and information of the sampled Plantago maxima populations

Site ID Country GPS coordinates Elevation (m) Number of 
individuals

n (morphometric 
analysis)

n (ISSR/trnL-trnF)

Kakucs KA Hungary 47.22094233 19.36152644 102  ~ 250 20 20/4

Táborfalva military shoot-
ing range

LO Hungary 47.11882594 19.32621506 99  ~ 35 17 20/4

Tatárszentgyörgy T Hungary 47.08095949, 
19.34209749

96  ~ 30 20 20/4

Kunpeszér KU Hungary 47.099115, 19.334108 97  ~ 2000 20 20/4

Soroksár Botanical Garden EX Hungary 47.400412, 19.158232 108  ~ 60 13–20/subpopulation 20/4

Sibin depression KH Kazakhstan 49.431944, 82.610833 783  ~ 50 N.E N.E./4

Table 2  The ISSR primer sequences and annealing temperatures 
applied in the Plantago maxima study

Ta annealing temperature

Primer ID Sequence (5’ → 3’) Ta (°C)

UBC 807 5’-AGA GAG AGA GAG AGA GT-3’ 49

UBC 808 5’-AGA GAG AGA GAG AGA GC-3’ 49

UBC 809 5’-AGA GAG AGA GAG AGA GG-3’ 49

UBC 811 5’-GAG AGA GAG AGA GAG AC-3’ 49

UBC 816 5’-CAC ACA CAC ACA CAC AT-3’ 49

UBC 818 5’-CAC ACA CAC ACA CAC AG-3’ 49

UBC 835 5’-AGA GAG AGA GAG AGA GYC-3’ 49

UBC 857 5’-ACA CAC ACA CAC ACA CYG-3’ 49

http://www.michaelsmith.ubc.ca
http://www.michaelsmith.ubc.ca


Page 6 of 15Kovács et al. Botanical Studies            (2023) 64:2 

studied populations, we used the STRU​CTU​RE HAR-
VESTER website (Earl and Vonholdt 2012) to apply the 
Evanno method (Evanno et al. 2005). The 10 runs of the 
best K were averaged and visualized with the web appli-
cation Pophelper (Francis 2017).

cpDNA trnL‑trnF sequence analysis
We chose trnL-trnF cp DNA primer (Table  3) formerly 
proved to be variable in molecular phylogenetic study of 
Plantago L. (Plantaginaceae) (Taberlet et  al. 1991; Røn-
sted et  al. 2002). PCR amplifications were performed 
using 24.5-μL reactions mixture containing 1 μL genomic 
DNA (20–30 ng), 18.7 μL Milli-Q ultrapure water (Mer-
ckmillipore, Billerica, MA, USA), 2.5 μL (10 ×) Dream 
Taq Green PCR buffer (ThermoFisher, Waltham, MA, 
USA), 0.5 μL (10 mM) dNTP mix (ThermoFisher), 1 μL 
(2.5  mM) MgCl2, 0.5 μL (10  mM) of each primer (Bio-
center Kft., Szeged, Hungary), 0.25 μL (1%) BSA (Ther-
moFisher), 0.5 μL (2%) DMSO (Reanal, Budapest, 
Hungary), and 0.05 μL (0.5 unit) Dream Taq Green DNA 
polymerase (ThermoFisher). The thermocycling condi-
tions were as follows: initial denaturation step at 94 ◦C 
for 5 min, followed by 35 cycles of 30 s of denaturation 
at 94 °C, 53 °C for 40 s and 2.5 min of extension at 72 °C, 
with a final extension step at 72  °C for 7 min. The PCR 
products were applied on a 1.5% (w/v) ethidium bromide 
stained agarose gel in 1xTBE buffer. PCR products were 
separated for 40 min at 100 V. Amplified products were 
purified using a CleanSweep PCR Purification (Applied 
Biosystems, Waltham, MA, USA) kit according to the 
manufacturer’s insctructions. Cleaned products were 
sequenced from both directions using an ABI PRISM 

3100 Genetic Analyzer automated DNA sequencer. 
The trnL-trnF sequences were aligned with Plantago 
sequences from the GenBank (Table 4). Plantago alpina, 
P. lanceolata, P. major and P. media voucher specimens 
were used as outgroups in the haplotype analyses. P. 
alpina and P. lanceolata were chosen from a differ-
ent subgenus for a greater attributable difference, while 
P.media and P. major were from the same subgenus as P. 
maxima, in order to test the differences among species 
of the same subgenus. The expected genetic similarity 
among species was high, highest compared to the species 
from the same subgenus as Plantago maxima.

Data analysis for cpDNA trnL‑trnF sequence polymorphism
We used BioEdit 7.2.5 software (Hall 1999), to edit the 
sequence chromatograms, with visual inspection being 
performed for all polymorphic sites detected. Alignments 
were performed using ClustalW (Thompson et al. 1994). 
Information on gaps (indels) within the aligned sequence 
matrices were coded as binary characters. Gaps were 
coded following the simple indel coding algorithm (Sim-
mons et al. 2001) using the program FastGap 1.2 (Borch-
senius 2009).

PopART (Leigh and Bryant 2015) with implemented 
Templeton–Crandall–Singh (TCS) statistical parsimony 
network analysis (Clement et al. 2002) was used to evalu-
ate genealogical relationships among sequences. Each 
insertion and deletion was considered to be a single 
mutation event, and all indels were coded as single posi-
tions in the final alignments. The connection limit for 
the TCS analysis was 95% and gaps were treated as a fifth 
state.

Results
Morphometric analyses
MANOVA yielded significant differences between 
populations (Wilk’s lambda = 0.32, p < 0.001), with sig-
nificant intercept (Wilk’s lambda = 0.03, p < 0.001), 
and significant difference between the studied years 
(Wilk’s lambda = 0.7, p < 0.001). In case of the biggest 
leaf length (F(6;375) = 36.32;p < 0.001) and biggest leaf 
width (F(6;375) = 45,10;p < 0.001) there were significant 

Table 3  Description and amplification conditions of cpDNA 
primer pair used for the molecular study

Ta annealing temperature

Name Forward/
Reverse

Sequence (5’ → 3’) Ta (°C)

trnL5’UAAF F CGA​AAT​CGG​TAG​ACG​CTA​CG 53

trnFGAA​ R ATT​TGA​ACT​GGT​GAC​ACG​AG

Table 4  Sequence information for Plantago species retrieved from GenBank

Species GenBank 
accession 
number

Similarity (%) Country and origin Voucher information

Plantago alpina L. AY101932.1 94.03 Origin unknown, cult. (University of Copenhagen) Jensen et al. 1996

Plantago lanceolata L. AY101952.1 91.39 Origin unknown, cult. (University of Copenhagen) Rønsted 33 (University of Copenhagen)

Plantago major AY101917.1 98.09 Sachsen-Anhalt (Martin-Luther-University, Halle) Rønsted 41 (University of Copenhagen)

Plantago maxima MK487969.1 99.40 No data available Rønsted 28 (University of Copenhagen)

Plantago media AY101920.1 97.40 Origin unknown, cult. (University of Copenhagen) Rønsted 50 (University of Copenhagen)
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differences between the populations (Fig. 2). However in 
case of the leaf number, no significant differences were 
detected (F(6;375) = 1.961; p = 0.07) (Fig.  3). According 
to the observed traits ex situ subpopulations fit into the 
values experienced in natural populations.

Individuals reached generative phase (Fig.  4) only at 
subpopulation 1. In 2019 two individuals, in 2020 three 
individuals, in 2021 four individuals produced flowers.

Chromosome count and FISH
The karyotype formula of P. maxima is 5 m + 1a. Chro-
mosomal localization of 35S and 5S rDNA loci have been 
investigated in two individuals belonging to two Hungar-
ian populations (Kakucs) and (Kunpeszér). At least five 
metaphases were investigated per individual. One 35S 
and two 5S rDNA loci were positioned on the acrocen-
tric chromosome 6. 35S rDNA was located subterminally 

on the short arm, while one 5S rDNA loci were located 
proximally to the centromere and the other subterminally 
on the long arm. 35S rDNA locus was heteromorphic. 5S 
rDNA locus positioned proximally to the centromere was 
at the edge of visibility. The mitotic metaphase, FISH and 
idiogram is presented in Figs. 5, 6 and 7.

Genetic diversity and differentiation
The amplification of the ISSR fragments in the 100 indi-
viduals, analysed with eight primers, found variable after 
a primary test, yielded 100 unambiguous and reproduc-
ible electrophoretic bands (Additional file 1: Figs. S1 and 
S2) ranging from seven to 16 bands for each of the prim-
ers. Eighty-seven bands (87.0%) were polymorphic when 
comparing all the samples (Table 5).

Fig. 2  Statistically significant morphometric variables (biggest leaf length and width) of Plantago maxima among the Hungarian populations under 
study, detected by Games-Howell post hoc test (p < 0.05). LO = Táborfalva military shooting range; KU = Kunpeszér; EX = Soroksár Botanical Garden 
– subpopulation 1,2 and 3; KA = Kakucs; T = Tatárszentgyörgy. The unit of the measurement is cm. Different letters refer to significant differences 
based on the Games-Howell post hoc tests among the populations

Fig. 3  Statistically significant morphometric variables (leaf number) of Plantago maxima among the Hungarian populations under study, detected 
by Tukey post hoc test (p < 0.05). LO = Táborfalva military shooting range; KU = Kunpeszér; EX = Soroksár Botanical Garden – subpopulation 1,2 and 
3; KA = Kakucs; T = Tatárszentgyörgy. Different letters refer to significant differences based on the Tukey post hoc tests among the populations
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The percentage of polymorphic loci was 69–85% 
between the populations. The highest polymorphism 
was detected in Kunpeszér population, where two pri-
vate bands were found. Nei’s gene diversity was lower in 
Kakucs and in the ex situ collection (He = 0.206), while 
this value was the highest in Kunpeszér (He = 0.257). 
The values of Shannon’s information index reflect simi-
lar results, the lowest in ex situ collection, the highest 
0.396 in Kunpeszér population (Table 6). AMOVA anal-
ysis revealed significant (p < 0.001) differences within 

the populations. Of the total genetic diversity, 8% was 
attributable to among populations and the remaining 
92% to within populations (Table 7).

Population genetic structure
The UPGMA-based dendrogram based on a similarity 
matrix using Jaccard’s coefficients is shown in Addi-
tional file  1. Genetic relationships among the studied 
habitats were calculated (Table  8) and an UPGMA-
based dendrogram obtained is shown in Fig.  8. and 
Additional file 1: Fig. S3. The five giant plaintain popu-
lations were grouped into three subgroups. One clade 
included ex situ and Tatárszentgyörgy, while the sec-
ond clade included Kakucs and Lőtér. The third clade 
represented only the Kunpeszér population, which was 
divergent from the other populations.

STRU​CTU​RE analysis on the ISSR dataset revealed 
the highest DK for K = 4 (DK = 8; Fig. 9). Admixed indi-
viduals among clusters were observed (Fig.  10). STRU​
CTU​RE analyses clearly discriminated the Kunpeszér 
population and classified into an individual cluster. This 
result is even more clear when K = 2 is considered. The 
remaining populations show a greater level of admix-
ture and mixed population structure.

cpDNA sequence trnL‑trnF
The total length of the trnL-trnF sequence was 837 bp. 
The haplotype network based on the trnL-trnF region 
consists of four Plantago maxima haplotypes (Fig. 11). 
H5-H8 haplotypes represent different Plantago species, 
while H1-H4 represent Plantago maxima haplotypes. 
The Hungarian populations were not polymorphic, 
sharing the same haplotype across individuals and pop-
ulations in the study region (H1). Between the Hungar-
ian and Kazakhstan samples the difference occurred 
in two positions: mononucleotide (A) microsatellite in 
226–236  bp position, and also a mononucleotide (T) 
microsatellite in 589–597  bp region. The Kazakhstan 
population comprised two different haplotypes (H2-
H3) based on the two microsatellite regions length. 
The Plantago maxima sample from NCBI (of unknown 
origin) represented another haplotype with two SNP in 
the 38 and 247 bp positions (H4).

Discussion
The Pannonian Basin holds a great botanical value pro-
viding primary and secondary refugia for European 
steppe species (Willner et al. 2021). Plantago maxima is 
one of the remaining relict steppe plants in the Hungar-
ian flora. The present study is the first to examine the 
genetic structure and population variability of in  situ 

Fig. 4  Plantago maxima individuals flowering in the ex situ collection

Fig. 5  Mitotic metaphase of Plantago maxima after staining with 
(DAPI) (2n = 2x = 12.). Scale bar = 10 μm
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and established ex situ giant plantain populations. To 
plan future conservation actions, it is important to ana-
lyse the current state of the populations and to compare 
the naturally occurring diversity to the established ex 
situ collection.

The results of a comparative morphological trait-
based analysis showed that the garden population fits 
into the trait variation of the natural populations. Dur-
ing a long-term conservation period, adaptation to the 

novel environment can induce morphological changes 
and shifts in life-history traits (Hammer 1984; Ens-
slin and Godefroid 2019). Changes can occur even in a 
short period of time as Rauschkolb et al. (2019) reported 
in their study. Therefore, it is important to evaluate the 
changes after the establishment of the ex situ popula-
tions. Volis and Blecher (2010) suggests establishing of 
new collections in near-natural habitat where adapta-
tion process to novel environment can be eliminated. 
Our trait-based results suggest that Molinia meadow of 
the Soroksár Botanical Garden was a good choice for 
preserving ex situ collection. Habitat conditions are very 
similar to that experienced in the natural sites and this 
most probably helps reducing the chance of local adapta-
tion to garden conditions.

During the three years observation period most of the 
individuals of the ex situ collection remained in vegeta-
tive state, the first few flowering individuals appeared 
in 2019, in just one of the subpopulations. However, the 
occurrence of the generative phase indicates the stabiliza-
tion of the population in the new environment, which is 
essential for long-term preservation. In case of Plantago 
coronopus the initiation of flowering was stage-depend-
ent and after the development of 14 leaves, plants started 
to form flowering buds (Koelewijn 2004). In case of Plan-
tago maxima, as no significant differences were observed 
between the natural populations and ex situ subpopula-
tions it is more likely that the delay of flowering-phase 
is caused by the differences in nutrient levels or differ-
ent competition regimes within the new ex situ habitat. 
However, this statement needs further investigation.

Genetic studies are important to evaluate natural 
population diversity and guide conservation efforts. 
To the best of our knowledge this is the first report on 

Fig. 6  FISH mapping of 35S (green) and 5S rDNA (red) on somatic metaphase chromosomes of Plantago maxima (2n = 2x = 12). Scale bar = 10 μm

Fig. 7  Idiogram of Plantago maxima 
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chromosome features and rDNA localization of Plantago 
maxima. All individuals from the four Hungarian popu-
lations were diploid (2n = 2x = 12) as Soó (1970) reported 
previously. The characterization and physical mapping 
of rDNA sites in Plantago resulted in species-specific 

Table 5  Polymorphism indices for inter simple sequence repeats (ISSR) primers used for genetic diversity analysis  in the Plantago 
maxima study

Primer name Band size range (bp) Total bands Polymorphic bands Polymorphism 
(%)

UBC 807 520–1270 13 12 92.31

UBC 808 480–1240 15 12 80.00

UBC 811 640–1450 13 11 84.62

UBC 857 280–790 9 4 44.44

UBC 835 420–760 7 6 85.71

UBC 816 680–2000 16 15 93.75

UBC 818 420–990 11 11 100

UBC 809 700–1585 16 16 100

Mean 280–2000 100 87 87

Table 6  Genetic variation in populations of Plantago maxima detected by inter-simple sequence repeat (ISSR) markers

N sample size, n number of polymorphic loci, PPL percentage of polymorphic loci, Na observed mean number of alleles per locus, Ne effective mean number of alleles 
per locus, I Shannon’s information index, He Nei’s gene diversity, S.E. standard error, uHe Unbiased expected heterozygosity, ID abbrev. EX - Soroksár Botanical Garden, 
T - Tatárszentgyörgy, KA - Kakucs, KU - Kunpeszér, LO - Táborfalva military shooting range

ID N n PPL Na Ne I He(S.E.) uHe

EX 20 69 69.00 1.610 1.337 0.317 0.206 (0.018) 0.211 (0.019)

T 20 74 74.00 1.680 1.365 0.344 0.223 (0.018) 0.229 (0.019)

KA 20 72 72.00 1.670 1.337 0.320 0.206 (0.018) 0.212 (0.019)

KU 20 85 85.00 1.850 1.422 0.396 0.257 (0.017) 0.264 (0.018)

LO 20 73 73.00 1.650 1.338 0.324 0.209 (0.018) 0.214 (0.018)

Mean values 74.60 74.60 1.692 1.360 0.340 0.220 (0.008) 0.226 (0.008)

Table 7  Summary of the analysis of molecular variance (AMOVA) in giant plantain using GenAlEx

Φ PhiPT value

Source of variation d.f Sum of Squares Estimated 
Variance

% Total Variance Φ Significance (p)

Among populations 4 140,920 1130 8 0.082  < 0.001

Within populations 95 1,199,000 12,621 92

Total 99 1,339,920 13,752 100

Table 8  Pairwise population matrix of Nei’s genetic distance of 
the giant plantain populations based on 8 ISSR markers

EX T KA KU LO

0.000 EX

0.038 0.000 T

0.025 0.036 0.000 KA

0.050 0.048 0.041 0.000 KU

0.033 0.040 0.025 0.041 0.000 LO

Fig. 8  Dendrogram of the 5 giant plantain populations studied 
generated by UPGMA cluster analysis of the similarity matrix obtained 
using Nei’s genetic distance based on ISSR data (Nei, 1978)
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patterns (Dhar et al. 2006, 2017; Wong and Murray 2014). 
Each Plantago species investigated so far has unique 
rDNA pattern enabling discrimination of species accord-
ing to the rDNA loci position. Plantago exhibit acceler-
ated structural evolution of their plastomes and highly 
accelerated substitution rates throughout the genome, 
which also explains the unique rDNA localization among 
different Plantago species (Cho et al. 2004; Mower et al. 
2021).

ISSRs are widely and successfully used in evaluating 
the genetic diversity of natural populations and so are 
important tools to guide conservation efforts and sup-
port ex situ collection establishment. ISSR markers are 
highly variable, therefore using a greater sample size 
and an extensive statistical analysis is required for bet-
ter resolution. When comparing the in  situ and ex situ 
populations it is important to evaluate the genetic rep-
resentativeness especially of the established ex situ col-
lection. In the Hungarian populations Plantago maxima 

reaches a relatively high genetic diversity (mean value 
of He = 0.220), in comparison to other endangered and 
endemic Plantago species where He = 0.1965–0.2309 was 
reported using ISSR markers (Ferreira et al. 2013). Higher 
genetic diversity can be reasoned by additional gene flow 
between the populations and recent isolation events. 
The overall equilibrated genetic diversity in the natural 
populations makes it important to conserve the genetic 
material of all populations, so the establishment of addi-
tional ex situ stocks are desirable in the future. Genetic 
diversity of in situ populations and ex situ stock was very 
similar, and in some stands displayed the same values 
(He = 0.206). In a few studies including different species 
genetic representation of the natural populations and 
botanical garden collections were also alike (Etisham-Ul-
Haq et al. 2001; Li et al. 2002, 2018; Ensslin et al. 2011; 
Chen et al. 2013; Guimaraes et al. 2019). For example a 
study revealed similar genetic diversity between wild and 
garden stock plants in Leucothrinax morrisii (H.Wendl.) 
C. Lewis and Zona (Namoff et al. 2010). The mean diver-
sity (He) was similar in the ex situ collection and wild 
populations. Also a great proportion of genetic variability 
was preserved in the ex situ population of Sinocalycan-
thus chinensis W. C. Cheng and S. Y. Chang (Chen et al. 
2013).

However, a great number of studies highlighted the 
underrepresentation of genetic variability in garden col-
lections (Rucińska and Puchalski 2011; Lauterbach et al. 
2012; Brütting et al. 2012; Christe et al. 2014; Miao et al. 
2015; Wilson et  al. 2017; Li et  al. 2018; Chacón-Vargas 
et al. 2019). For instance reduced genetic diversity in ex 
situ collection was observed in case of Cochlearia polon-
ica E. Frohlich (Rucińska and Puchalski 2011). Maintain-
ing high genetic diversity is essential to eliminate negative 
trends in the genetic make-up of the ex situ collections.

The genetic structuring of natural plant populations 
results from the distribution shifts, habitat fragmenta-
tion, selection, gene flow and genetic drift or mutation 
events (Hamrick and Schnabel 1985; Schaal et al. 1998). 
The UPGMA cluster analysis revealed that the Kunpeszér 
population is differentiated from the other four studied 
population. Similarly STRU​CTU​RE analysis revealed also 
that Kunpeszér population which is the largest natural 
population in Hungary differentiated from the others in 
case of K = 4. A great level of admixture and mixed pop-
ulation structure was observable among the remaining 
populations. The AMOVA results revealed that most of 
the diversity occurs within populations (92%), which is 
in accordance with STRU​CTU​RE results. The low pop-
ulation differentiation can be due to small geographic 
distances among the observed populations as it was 
observed in the westernmost German exclave of Adonis 
vernalis (Kropf et  al. 2020). The Hungarian populations 

Fig. 9  STRU​CTU​RE HARVESTER results for Plantago maxima 
populations. A Mean of lnK probability and B delta K

Fig. 10  Estimated genetic population structure of Plantago maxima 
populations based on ISSR markers for K = 2 and K = 4 revealed STRU​
CTU​RE with the location priory model. EX, Soroksár Botanical Garden 
– ex situ; TAT, Tatárszentgyörgy; KAK,Kakucs; KUN, Kunpeszér; LO, 
Táborfalva military shooting range
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have a small distribution area, also some populations 
have small number of individuals. The above mentioned 
reasons could explain the lower diversity value and high-
lights the importance of ex situ conservation.

The trnL(UAA)-trnF(GAA) region was formerly suc-
cessfully used in a molecular phylogenetic study of Plan-
tago L. (Plantaginaceae) (Rønsted et  al. 2002). Based on 
the cpDNA trnL-trnF marker, a study with Plantago 
brutia and Plantago media revealed the occurrence of 
several haplotypes of both species from Sweden to the 
Iberian Peninsula and the Balkans (Palermo et al. 2010). 
However, no sequence variation was detected within 
the Hungarian populations. A low haplotype diversity at 
the edge populations were also observed in several stud-
ies (Becker 2005; Hensen et  al. 2010; Durka et  al. 2013; 
Kropf et  al. 2020) indicating possible recent population 
declines. However, it is important to highlight the pres-
ence of a distinct haplotype preserved in the Hungarian 
populations, compared to the Kazakhstan population 
originating from the central part of the species’ distribu-
tion area. Further studies and more samples should be 
analysed to estimate the distance between Central-Asian 
and European populations.

Unique haplotypes were also observed in edge popula-
tions of Poa badensis (Plenk et al. 2017) and Adonis ver-
nalis (Kropf et al. 2020). Peripheral populations are often 
smaller in population size and genetically more differen-
tiated, frequently with lower genetic diversity compared 
to central populations (Sagarin and Gaines 2002; Eckert 
et al. 2008; Sexton et al. 2009). However, there are several 
exceptions, when edge populations do not support abun-
dant centre hypothesis (Abeli et  al. 2014). These results 

indicate the great importance to conserve Hungarian 
populations for preserving species natural gene stock on 
the periphery.

Conclusions
We studied the morphological, cytological and genetic 
diversity of the natural populations and ex situ botanic 
garden collection of the highly protected Plantago max-
ima in Hungary. These populations at the westernmost 
periphery of species’ distribution range represent an 
important gene pool that is shown to be different and 
adaptively diverge from central populations. There were 
no observable morphological changes in the garden 
populations seven years after introduction compared to 
the wild populations. This result highlights that since the 
establishment of the ex situ stock no maladaptive changes 
have occurred. This is an important prerequisite for suc-
cessful conservation and restoration. Long-term conser-
vation however requires further monitoring activity. We 
found only four flowering ex situ individuals, but it would 
be desirable to have more. Therefore, the assessment of 
the needs for flowering requires further studies.

Based on the chromosome study there were no observ-
able differences between the Hungarian populations, all 
studied individuals were diploids exhibiting same chro-
mosome number. Accordingly in the establishment of 
the ex situ collections no special attention should be 
drawn to population ploidy level. It would be desirable 
to compare our findings with other populations from the 
central area to evaluate possible differences in the cen-
tral-peripherial context.

KU,EX,T,LO,KA

KH2,
KH5,
KH6

KH3

MK487969.1_Plantago maxima

AY101920.1_Plantago media

AY101917.1_Plantago major

AY101952.1_Plantago lanceolata

AY101932.1_Plantago alpina

Fig. 11  The haplotype network obtained based on Templeton–Crandall–Singh analysis of the trnL-trnF cpDNA region of Plantago samples. Black 
dots indicate missing intermediate haplotypes that were not observed in the analyzed sample set. The numbers on branches represent mutation 
steps (number of base pair changes) between haplotypes. For abbreviation see Table 1. 
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By evaluating genetic variability of the natural popu-
lations in comparison with ex situ stock we could not 
detect decrease of genetic variability within later as 
genetic indexes were fairly similar. This proportion 
of variation indicates that the ex situ collection bears 
high adaptive potential for even a longer conserva-
tion period. However, the different genetic structuring 
suggests a possible loss of naturally occurring alleles 
(Kakucs n = 95) from the ex situ population (n = 92), 
therefore introduction of new individuals is required to 
strengthen the botanical garden population. Kunpeszér 
population bears the most elevated genetic diversity, 
therefore the establishment of new ex situ collection 
with propagules originating from that population is 
highly recommended. The lower number of individuals 
in Táborfalva and Tatárszentgyörgy preserving similar 
genetic diversity in these two localities also requires the 
need of establishing new ex situ gene stocks.
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