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Abstract 

DNA methylation is a crucial epigenetic modification involved in multiple biological processes and diseases. Current 
approaches for measuring genome‑wide DNA methylation via bisulfite sequencing (BS‑seq) include whole‑genome 
bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and enzymatic methyl‑seq (EM‑
seq). The computational analysis tools available for BS‑seq data include customized aligners for mapping bisulfite‑
converted reads and computational pipelines for downstream data analysis. Current post‑alignment methylation 
tools are specialized for the interpretation of CG methylation, which is known to dominate mammalian genomes, 
however, non‑CG methylation (CHG and CHH, where H refers to A, C, or T) is commonly observed in plants and fungi 
and is closely associated with gene regulation, transposon silencing, and plant development. Thus, we have devel‑
oped a MethylC‑analyzer to analyze and visualize post‑alignment WGBS, RRBS, and EM‑seq data focusing on CG. The 
tool is able to also analyze non‑CG sites to enhance deciphering genomes of plants and fungi. By processing aligned 
data and gene location files, MethylC‑analyzer generates a genome‑wide view of methylation levels and methylation 
in user‑specified genomic regions. The meta‑plot, for example, allows the investigation of DNA methylation within 
specific genomic elements. Moreover, our tool identifies differentially methylated regions (DMRs) and investigates the 
enrichment of genomic features associated with variable methylation. MethylC‑analyzer functionality is not limited 
to specific genomes, and we demonstrated its performance on both plant and human BS‑seq data. MethylC‑analyzer 
is a Python‑ and R‑based program designed to perform comprehensive downstream analyses of methylation data, 
providing an intuitive analysis platform for scientists unfamiliar with DNA methylation analysis. It is available as either 
a standalone version for command‑line uses or a graphical user interface (GUI) and is publicly accessible at https:// 
github. com/ Ritat aLU/ Methy lC‑ analy zer.

Keywords DNA methylation, Differentially methylated regions, MethylC‑analyzer, Next‑generation sequencing, 
Bisulfite sequencing, Whole‑genome bisulfite sequencing, Reduced representation bisulfite sequencing, Enzymatic 
methyl‑seq

Background
DNA methylation, referring to the addition of a methyl 
group to the fifth carbon of cytosine (C) to form 
5-methylcytosine (5mC), is one of the most crucial epig-
enomic mechanisms in biological processes. DNA meth-
ylation occurs in the symmetric CG and CHG contexts 
and in the asymmetric CHH context (where “H” repre-
sents A, C, or T) (Hsu et  al. 2018). The biological pro-
cesses known to be associated with DNA methylation 
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include genomic imprinting, gene silencing, embryonic 
development, X chromosome inactivation, the altera-
tion of chromatin structure, and transposon inactivation 
(Jones 2012; Wilson et al. 2012).

Experimental approaches such as methylated DNA 
immunoprecipitation sequencing (MeDIP-seq) (Weber 
et al. 2005), reduced representation bisulfite sequencing 
(RRBS) (Meissner et  al. 2005), whole-genome bisulfite 
sequencing (WGBS) (Cokus et al. 2008), Illumina’s Infin-
ium Methylation 450  K/EPIC BeadChip (Pidsley et  al. 
2016) and enzymatic methyl-seq (EM-seq) (Vaisvila et al. 
2021) have been developed to measure genome-wide 
methylation. MeDIP-seq is an affinity enrichment-based 
approach that uses 5mC-specific antibodies to enrich 
methylated DNA fragments. Illumina’s Infinium Human-
Methylation450 BeadChip (HM450K) relies on hybridi-
zation of genomic fragments to probes on the chip to 
measure the DNA methylation of 485,512 CpG sites in 
the human genome (Naeem et  al. 2014). The Infinium 
Methylation EPIC BeadChip (EPIC) improved HM450 
array covers over 850  K CpG sites, including > 90% of 
the CpGs from HM450 and an additional 413,743 CpGs. 
RRBS and WGBS both rely on the bisulfite conversion-
based method. During bisulfite conversion, unmethyl-
ated cytosines (C) are converted to uracils (U), while the 
methylated cytosines do not react with sodium bisulfite 
and thus remain unchanged. As the converted uracils (U) 
are turned into thymines (Ts) during PCR amplification, 
all the Cs in the corresponding sequencing reads rep-
resent 5mCs in the sample DNA (Frommer et al. 1992). 
WGBS theoretically covers all cytosines in the genome, 
and RRBS targets enriched CpG-rich regions (Gu et  al. 
2011). Likewise, in addition to sodium bisulfite, DNA 
bases can also react with enzymes such as ten-eleven 
translocation (TET) family enzymes and APOBEC2. The 
EM-seq technique detects 5mC and 5hmC using two sets 
of enzymatic reactions. In the first enzymatic step, TET2 
is applied to oxidize methylated cytosines, and APOBEC2 
is used to deaminate unmethylated cytosine (C) to uracil 
(U). After PCR amplification, oxidized methyl cytosines 
form base pairs with guanines (G), and uracils (U) pair 
with adenines (A). BS-seq approaches, including WGBS 
and RRBS, are commonly used for quantifying DNA 
methylation with single-base resolution. Since the end 
products of WGBS and EM-seq are the same, the same 
analysis tools can be used.

Several computational tools have been created for BS-
seq analysis. For example, BAT is a toolkit that facilitates 
bisulfite sequencing data analysis, providing standard 
processing and analysis steps from raw read alignment up 
to the calculation of DMR correlations (Kretzmer et  al. 
2017). Bicycle is a command-line-based tool that uses 
raw read alignments to identify differentially methylated 

sites in WGBS, RRBS, and hydroxymethylation datasets 
(Grana et  al. 2018). RnBeads 2.0 is a R/Bioconductor 
package and can perform differential DNA methylation 
analysis on EPIC microarray and BS-seq data. RnBeads 
2.0 improves upon the original version with enhanced 
computational efficiency and the addition of an intuitive 
graphical user interface (GUI) (Muller et  al. 2019). nf-
core/methylseq is a workflow management system built 
by Nextflow that can run tasks across multiple compu-
tational infrastructures in a portable manner. It focuses 
on processing, from raw reads to methylation site calling 
(Ewels et al. 2020). Although many tools are available to 
handle BS-seq data, there is still a gap in pipeline auto-
mation with customizable downstream analyses for users’ 
own datasets. Some tools require users to work with only 
the command-line interface (CLI) on Linux-like systems, 
which can be difficult for beginners, while others do not 
provide comprehensive downstream analysis or visuali-
zation functions. Here, we developed MethylC-analyzer, 
a comprehensive pipeline designed for the integrated 
analysis of BS-seq and EM-seq, enabling downstream 
analyses of post-alignment BS-seq and EM-seq for three 
kinds of cytosine methylation sites (CG, CHG, and 
CHH). MethylC-analyzer performs differential methyla-
tion analysis, including the identification of differentially 
methylated regions (DMRs) and differentially methylated 
genes (DMGs). Furthermore, it permits the investigation 
of locations that are enriched in these variable methyla-
tion regions. Finally, MethylC-analyzer comes with a GUI 
to provide an intuitive user experience.

Construction and content
MethylC-analyzer is a Python-based pipeline incorporat-
ing R that performs various BS-seq and EM-seq analyses. 
The pipeline can be divided into three major compo-
nents, (1) preprocessing, which generates intermediate 
outputs before analysis, such as summary tables of the 
methylation levels in each comparable region of aligned 
BS-seq datasets; (2) identifying differential methylation 
analysis, which compares methylation levels between two 
groups at the level of the whole genome or gene bodies; 
and (3) visualizations, where MethylC-analyzer will gen-
erate high quality figures (300 dpi) for each analysis step.

MethylC-analyzer is available as both a graphical user 
interface (GUI) and a standalone version for command-
line usage. A list describing sample names and their cor-
responding post-alignment data (i.e., a CGmap) and gene 
annotation file (GTF) are essential inputs for MethylC-
analyzer (Fig.  1). MethylC-analyzer can be executed in 
the local Unix/Linux environment, and a tutorial is pro-
vided at the GitHub repository (https:// github. com/ Ritat 
aLU/ Methy lC- analy zer). Alternatively, MethylC-analyser 
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also incorporates the docker container, a lightweight 
virtualization technology, with its required system envi-
ronment setting in terms of computing form. It offers 
a simplified and user-friendly way to start and deploy 
applications. The tutorial can be accessed via DockerHub 
https:// hub. docker. com/r/ peiyu lin/ methy lc.

Utility and discussion
Preprocessing of methylome data
The inputs of MethylC-analyzer are a list of samples and 
their corresponding post-aligned DNA methylation pro-
files (CGmap) and gene annotation file (GTF format). 
CG map (see Additional file  3: Table  S1 for the format) 
provides sequence context for each cytosine (CG, CHG, 
CHH, H=A, T, or C) and estimates the DNA methylation 

level of cytosines in the reference genome, which is com-
parable to the output of bisulfite-specific aligners such as 
BS-Seeker2 (Guo et  al. 2013), BS-Seeker3 (Huang et  al. 
2018) and BiSulfite Bolt (Farrell et al. 2021). The methyla-
tion calling files from other aligners can be converted to 
CG map format by MethylC-analyzer. MethylC-analyzer 
provides an independent Python script (see GitHub for 
methcalls2CGmap.py) to convert these files to com-
pressed CGmap files. The output files from other align-
ers that can be handled by MethylC-analyzer include 
CX report files generated by Bismark, methylation calls 
generated by methratio.py in BSMAP (v2.73), and TSV 
files exported from the methylation calling status with 
METHimpute (Krueger and Andrews 2011; Li and Li 
2009; Taudt et  al. 2018). MethylC-analyzer utilizes the 

Fig. 1 Schematic diagram of MethyC‑analyzer. MethylC‑analyzer is a sequential pipeline for analyzing post‑align BS‑seq. To run MethylC‑analyzer, 
users provide a description text file with post‑alignment methylation summaries for each cytosine site of samples, e.g. CGmap and gene annotation 
file (GTF). The first step MethylC‑analyzer is to generate summary methylome figures of CG, CHG, and CHH context, including PCA, heatmap, 
and the distribution of methylation in each chromosome and gene‑centric manner. The following is to perform differential methylation analysis 
between two groups, for example, identifying differential methylation regions (DMRs) and its related genes (DMGs). Also, comparing methylation 
status around specific regions, such as gene bodies and promoters. Moreover, to survey the DMR enrich status at specific genomic feature regions 
(i.e., gene bodies, promoters, exons, introns, S’UTR, 3’UTR, IGR.); The last step is to visualize the above analyses, MethylC‑analyzer will generate 
publication‑ready figures for each step

https://hub.docker.com/r/peiyulin/methylc
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CG maps and adopts nonoverlapping window-based 
methods for genome-wide screening to compute the 
average methylation level. The eligible regions should 
contain at least four cytosines within 500  bp, with 
each cytosine covered by at least four reads in all sam-
ples by default; users have the flexibility to adjust these 
parameters.

Visualization of the general DNA methylome
MethylC-analyzer provides three kinds of figures for 
the visualization of overall DNA methylation patterns. 
First, MethylC-analyzer conducts principal component 
analysis (PCA) to condense the information of each sam-
ple into two dimensions for easy visualization. Each dot 
on the PCA plot indicates one sample, and the distance 
between dots represents the variation among samples. 
The closer any two dots are, the higher their similarity. 
Moreover, MethylC-analyzer generates a hierarchical 
clustering heatmap to represent methylation levels in a 
color scale. Each column indicates one sample, and each 
row represents one variable methylation region, where 
the difference in methylation between the maximum 
and minimum is 20%; the criterion for methylation dif-
ferences indicative of a variable methylation region can 
be manually modified by the user. Furthermore, our tool 
evaluates the mean methylation levels within groups in 
three cytosine contexts (CG, CHG, CHH) and generates 
a bar plot representing the average methylation levels 
across groups in three contexts.

Visualization of DNA methylation across the whole genome 
and specific genomic regions
To visualize the genome-wide distribution of DNA meth-
ylation, MethylC-analyzer separates the genome into 
several large regions by using nonoverlapping tiling win-
dows. By default, each window size is 1000 kb and covers 
at least four cytosines. Next, figures are generated to dis-
play the methylation levels of individual samples and the 
difference in methylation between the two groups across 
the genome at CG, CHG and CHH sites. Furthermore, 
MethylC-analyzer generates a metaplot encompassing 
regions 2 kb downstream and upstream of the gene body 
to investigate the DNA methylation levels proximal to the 
gene of interest.

Identifying differentially methylated regions 
and differentially methylated genes
To reveal the distinct methylation patterns between two 
groups, differentially methylated region analysis (DMR) 
is performed by comparing the average methylation lev-
els between the control and experimental samples. Three 
different statistical testing methods are available for users 
to choose: Student’s t test, the Kolmogorov–Smirnov 

test (Massey 1951), and the Mann–Whitney U test 
(Mann and Whitney 1947). As a default setting, DMRs 
are defined as regions in which the difference in average 
methylation level is ≥ 10% with a p value less than 5%. 
Users have the flexibility to adjust these parameters. We 
provide both DMR text and BED files, and the BED files 
can be directly loaded into genome browsers such as the 
Integrative Genomics Viewer (IGV) as tracks for visuali-
zation (Robinson et al. 2017). A gene with a DMR located 
either in gene bodies or promoters will be considered a 
differentially methylated gene (DMG). The regions 2  kb 
upstream of transcriptional start sites (TSSs) are defined 
as promoters in our tool.

Enrichment analysis
To investigate whether DMRs are enriched or depleted in 
any specific genomic feature (e.g., promoter), MethylC-
analyzer processes gene annotation GTF files into 8 
genomic features as BED files of their locations, including 
promoter, gene body, exon, intron, 5′ untranslated region 
(5′UTR), coding sequence (CDS); 3′ untranslated region 
(3′UTR), and intergenic region (IGR). Then, the enrich-
ment of DMRs at these genomic features against the 
genome background is calculated to produce a bar chart 
using the equation below:

where RG is the length of the DMRs of a specific genomic 
feature, and LR is the total genomic length of all DMRs. 
This first ratio is used to estimate the percentage of spe-
cific genomic feature DMRs length among all DMRs in 
the genome. To evaluate the genome wide enrichment of 
the genomic feature, the percentage of the feature in the 
genome is accounted for, Hence, a second ratio between 
LF, the total length of this specific genomic feature, and 
LG, the length of the whole genome, is used for normali-
zation. A higher enrichment value indicates that a DMR 
is more enriched in the specific genomic feature.

Demonstrating MethylC‑analyzer on Arabidopsis thaliana 
WGBS
To demonstrate that MethylC-analyzer on plants 
genomes, we downloaded and processed Arabidop-
sis thaliana (GSE122394, GSE148753) BS-seq datasets 
(Choi et  al. 2020; Parent et  al. 2021). The Arabidopsis 
WGBS included methyltransferase 1 (MET1) mutant, 
CMT2 CMT3 double mutant (cmt2 cmt3) and wild 
type (WT) strains. In the model plant Arabidopsis, CG 
methylation is maintained primarily by MET1 (Law and 
Jacobsen 2010; Stroud et  al. 2014); CMT2 and CMT3 
play an important role in maintaining CHG and CHH 
methylation, respectively (Stroud et al. 2014; Zhong et al. 

log2
RG
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− log2
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2021). We applied MethylC-analyzer to analyze four WT 
and three DNA methyltransferase met1 mutant strains 
(GSE122394) of Arabidopsis thaliana. These seven 
WGBS datasets were mapped to the Arabidopsis TAIR10 
genome using BS-Seeker2 (Guo et al. 2013). The output 
files include a CG map and post-aligned mapping sum-
maries for each cytosine, including coverage and meth-
ylation level. The reported DNA methylation level ranges 
from 0 (completely unmethylated) to 1 (fully methylated). 
A list of CG maps for each sample and a gene annota-
tion file (GTF) were loaded into MethylC-analyzer for 
downstream analyses. First, MethylC-analyzer utilized 
CG maps and conducted nonoverlapping window-based 
methods for genome-wide screening and computed 
the average methylation level. The eligible regions con-
tained at least four cytosines within 200  bp, with each 
cytosine covered by at least four reads in all samples. In 
total, there were 4895 regions qualified for CG meth-
ylation analysis. To visualize the general methylomes in 
met1 and WT samples on CG methylation, MethylC-
analyzer conducted principal component analysis (PCA) 
to generate a plot to show the variation between the two 
samples. PCA showed clearly separated the met1 and 
WT samples. Based on principal component 1 (PC1), 
98.1% of the windows were found to change their meth-
ylation state along with met1 mutation (Fig.  2A), which 
is also supported by unsupervised hierarchical clustering 
analysis (Fig.  2B). The hierarchical clustering heatmap 
(Fig. 2B) showed 1102 variable CG regions in 7 samples; 
the DNA methylation level difference between maximum 
and minimum samples in each region was at least 50%. 
There is a clear difference in methylation between met1 
and WT, with met1 exhibiting decreased DNA methyla-
tion relative to WT. Overall, the average CG methylation 
were 18.7% and 0.5% in WT and met1, respectively. met1 
samples were hypomethylated by 18.1% in comparison to 
the WT reference genome, and minor hypomethylation 
occurred in non-CG sites (Fig. 2C), indicating that met1 
corresponded with a nearly complete loss of CG meth-
ylation and a partial loss of non-CG methylation (Zhong 
et al. 2021).

To further investigate the distribution of the DNA 
methylation level and differences on each chromo-
some, we computed the methylation level along the 
whole genome in windows of 1  Mb and observed the 
distribution of met1 and WT samples on the chromo-
somes. Figure 2D shows that the CG methylation could 
further contextualize the above results, as CG methyla-
tion was evenly decreased on all chromosomes in each 
met1 sample (Fig.  2D). To investigate the DNA meth-
ylation distribution in the two groups in a gene-centric 
manner, MethylC-analyzer processed regions upstream 
of transcriptome start sites (TSSs), downstream of 

transcriptome end sites (TESs), and within gene bod-
ies. In Fig.  2E, an increasing CG methylation level was 
observed at TSSs and TESs, whereas decreased meth-
ylation was observed within gene bodies in met1 com-
pared to WT. A 20% difference in DNA methylation (p 
value < 0.01) within 200  bp was considered a significant 
DMR (see section “Construction and content”). A total of 
1148 hypo CG-DMRs and 0 hyper DMRs were identified 
(Fig.  2F), which matched the trend of decreased global 
methylation levels observed in the genome-wide meth-
ylation view (Fig. 2D). In total, 480 genes were associated 
with DMRs at a promoter or gene body (Fig.  2D) and 
were considered differentially methylated genes (DMGs). 
Then, we investigated whether these DMRs were local-
ized to specific genomic regions or were randomly dis-
tributed. As shown in Fig. 2G, CG DMRs were enriched 
in the intergenic region (IGR) (Fig. 2G).

To decipher the non-CG methylation alteration in 
plant’s genome, we then applied MethylC-analyzer to 
cmt2 cmt3 double mutant (GSE148753). One cmt2 cmt3 
double mutant of Arabidopsis thaliana was processed 
to evaluate the distribution of non-CG methylation in 
this line compared to that in one WT (GSE122394). As 
shown in Fig. 2H, I, the cmt2 cmt3 mutant depleted CHG 
and CHH methylation compared to the WT. This result 
is consistent with the previous findings that cmt2 mutant 
of Arabidopsis reducing global CHH methylation; cmt3 
mutants lost CHG methylation, and cmt2 cmt3 double 
mutants were stronger loss of CHG methylation than 
cmt3 mutant (Stroud et al. 2014). The results from met1 
and cmt2 cmt3 demonstrated that MethylC-analyzer is 
able to assess both CG and non-CG methylation.

Demonstrating MethylC‑analyzer with human RRBS data
To demonstrate that MethylC-analyzer is applicable to a 
variety of genomes, we then downloaded and processed 
human (GSE110057) data (Bowden et  al. 2020; Zhong 
et al. 2021). The human data were assessed using RRBS, 
and the library was generated from autosomal dominant 
polycystic kidney disease (ADPKD) and non-ADPKD 
kidney tissues, each of which had 3 replicates. ADPKD 
is the most common inherited kidney disease, affect-
ing 1–5 per 10,000 individuals (Solazzo et al. 2018), and 
aberrant DNA methylation patterns are associated with 
many types of cancers. A previous study identified global 
hypermethylation in the genome of ADPKD-derived 
DNA (Woo et  al. 2014), We performed all analyses in 
MethylC-analyzer to examine the DNA methylation sta-
tus of these two genomes. Raw reads of three ADPKD 
and three non-ADPKD RRBS were mapped to the human 
hg19 reference genome with BS-Seeker2 (Guo et  al. 
2013).
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Fig. 2 Visualization of Arabidopsis genomewide methylation analysis (A) PCA and (B) Hierarchical clustering showed a clear difference between 
met1 and wild‑type (WT). C The average methylation level in two genotypes in 3 contexts (CG, CHG, CHH). D The CG methylation level in 
genome‑wide view. E Metagene plot of Δ CG methylation levels in met1. F The summary of DMR and DMG numbers. G DMRs enriched in IGR. 
The CHG (H) and CHH (I) methylation level of cmt2 cmt3 double mutant and wild‑type in genome‑wide view. TSS transcription start site, TES 
transcription end site, 5′UTR  5′ untranslated region, CDS coding sequence, 3’UTR  3′ untranslated region
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ADPKD and non-ADPKD methylation are distinct, 
and two groups can be clearly observed in the PCA 
plot (Additional file  1: Fig. S1A). The clustering heat-
map further showed a clear difference in methylation 
between ADPKD and non-ADPKD samples (Additional 
file 1: Fig. S1B). The average CG methylation values in 
ADPKD and non-ADPKD tissues are shown in Addi-
tional file  1: Fig. S1C. While the percent methylation 
in ADPKD was 53.6% on average, that in non-ADPKD 
was 54.8%, indicating that ADPKD was hypomethyl-
ated by 1.2% in comparison to the non-ADPKD refer-
ence genome. Additional file 1: Fig. S1D shows that the 
methylation levels of the three ADPKD samples were 
all lower than those of the non-ADPKD samples on 
each chromosome. Additional file  1: Fig. S1E revealed 
that although the global differences in methylation lev-
els (∆ methylation) between ADPKD and non-ADPKD 
were minor (1.2%, Additional file  1: Fig. S1C), highly 
variable CG methylation was observed locally in several 
chromosomal regions, indicating that ADPKD-derived 
genomic DNA presents global hypomethylation com-
pared with non-ADPKD kidneys (Bowden et al. 2018). 
Overall, we found that ADPKD exhibited a lower aver-
age CG methylation level than non-ADPKD and that 
this trend persisted across the genome.

We then investigated the distribution of differential 
DNA methylation levels in a gene-centric manner for 
the two groups. Additional file  1: Fig. S1F shows that 
decreased CG methylation levels were observed at TSSs 
and TESs, whereas methylation was increased within 
the gene bodies, for both ADPKD and non-ADPKD. 
The differential methylation patterns observed in these 
two groups are shown in Additional file  1: Fig. S1G. 
The ADPKD samples exhibited generally decreased 
CG methylation in both gene bodies and surround-
ing regions relative to the non-ADPKD samples. We 
further identified the DMRs with respect to CG sites. 
A 20% difference in DNA methylation (p value < 0.01) 
within 500  bp was considered a significant DMR. In 
total, we identified 1751 DMRs in ADPKD compared 
to non-ADPKD, comprising 965 hyper- and 786 hypo-
DMRs (Additional file  1: Fig. S1H). Then, we investi-
gated whether these DMRs were localized to specific 
genomic regions or were randomly distributed. As 
shown in Additional file  1: Fig.  S1I, CG DMRs exhib-
ited strong enrichment in the 3’UTR after adjusting for 
RRBS fragments. In total, 939 genes were associated 
with DMRs at a promoter or gene body (Additional 
file  1: Fig. S1H) and were considered differentially 
methylated genes (DMGs). Among these DMGs, 933 
were located in gene bodies and 134 were in promoters. 
Some of these DMGs were reported in an earlier study 
associated with ADPKD (Woo et al. 2014), for example, 

PKD1 (a major driving gene in ADPKD), NOTCH1 
(which regulates the cell differentiation pathway), and 
SLC22A18 (participating in cellular transport) were all 
hypermethylated in the gene body.

Feature comparison with other methylome analyzers
MethylC-analyzer is specifically designed for compara-
tive DNA methylation analysis of post-alignment BS-
seq data, including WGBS and RRBS. MethylC-analyzer 
provides comparisons of methylation at the scale of 
the whole genome (methylation levels along the whole 
genome by chromosome) and individual regions (iden-
tifying DMRs) and further interrogates the methyl-
ome around specific genomic features (i.e., gene bodies 
or promoters). Table  1 provides a comparison of the 
features offered by MethylC-analyzer and other pub-
lished computational tools designed for the analysis of 
BS-seq, including BAT (Kretzmer et  al. 2017), Bicycle 
(Grana et  al. 2018), RnBeads 2.0 (Muller et  al. 2019), 
HOME (Srivastava et  al. 2019) and nf-core/methylseq 
(Ewels et  al. 2020). Among the 5 tools that were evalu-
ated, MethylC-analyzer includes most features except 
for raw read alignment. As there are already many use-
ful bisulfite-specific aligners, such as BS Seeker2 (Guo 
et al. 2013), and their output files are mostly compatible 
with MethylC-analyzer, MethylC-analyzer actually allows 
users more flexibility to use their preferred aligner.

In terms of the user interface, only bicycle and nf-core/
methylseq lack a user-friendly interface to provide a sim-
ple deployment environment. For processing methylation 
data generated using different experimental approaches, 
all tools can process WGBS; MethylC-analyzer, BAT, 
RnBeads 2.0, and nf-core/methylseq can also be applied 
to RRBS; and microarray and hydroxymethylation data 
can be handled only by RnBeads 2.0 and Bicycle, respec-
tively. Apart from nf-core/methylseq, most of these tools 
provide differential methylation analysis. In terms of 
visualization, MethylC-analyzer provides several unique 
functions to visualize the methylation analysis results, 
including whole-genome and region-specific plots, which 
are features that the other tools lack. In brief, MethylC-
analyzer provides comprehensive functionalities to pro-
cess WGBS and RRBS and allow versatile downstream 
analysis.

Comparison of DMR calling with other DMR software
We compared the DMRs identified by BAT, Bicy-
cle, HOME, and MethylC-analyzer (Table  1). The test 
data were from Arabidopsis, comprising WGBS of 2 
otu5 mutant samples and 2 wild-type controls (Yen 
et  al. 2017). Each tool was used with its default param-
eters to predict DMRs between otu5 and WT strains. 
MethylC-analyzer, BAT and Bicycle were able to predict 
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Table 1 Comparisons of MethylC‑analyzer with other methylation analysis tools

"+", available; "−", not available

CLI command line interface, GUI graphical user interface, WGBS whole-genome bisulfite sequencing, RRBS reduced representation bisulfite sequencing, 5hmC 5′ 
hydroxymethylcytosine, PCA principal component analysis, DMRs differentially methylated regions, DMGs, differentially methylated genes

Features MethylC-analyzer BAT (2017) Bicycle (2018) RnBeads 2.0 (2019) HOME (2019) nf-core/
methylseq 
(2020)

Environment CLI/GUI/ Docker Docker CLI CLI/GUI CLI Docker

Experimental approaches WGBS, RRBS WGBS, RRBS WGBS and 5hmC seq EPIC microarrays, WGBS and 
RRBS

WGBS, RRBS WGBS, RRBS

Alignment − + + − − +
Sequence context of cyto‑
sine methylation

CG, CHG, CHH CG CG, CHG, CHH CG CG, CHG, CHH CG, CHG, CHH

Visualization of the general 
methylome

PCA, Hierarchi‑
cal clustering 
heatmap

− − PCA, Hierarchical clustering 
heatmap

− −

Genome‑wide visualization + + − + − −
Visualization of methylation 
levels at specific regions

+ − − − − −

Differential methylation 
analysis

DMRs and DMGs DMRs DMRs DMRs DMRs ‑

Visualization of DMR 
enrichment within specific 
genomic features

+ − − − − −

Converting GTF gene 
annotation to .bed files with 
7 genomic regions 

+ − − − − −

Generating files for loading 
into genome browsers (i.e., 
IgV)

+ − + − − −

DMR testing method Student’s t test 2D‑KS with 
dynamic 
border

Likelihood ratio 
of beta‑binomial 
models

Welch’s t test Weighted 
logistic 
regression

−

Fig. 3 DMR calling comparison. A Number of CG DMRs called by MethylC‑analyzer, BAT, Bicycle, and HOME using the Arabidopsis WGBS data. B 
The percentage of DMRs confirmed by the DMRs calling tools. The color key indicated the number of other DMR tools detected the same DMR. For 
example, "0" is the set of DMRs predicted by only one caller, and "3" is the set of DMRs predicted by all callers
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approximately 10–18 K DMR, whereas HOME was able 
to predict only approximately 1 K DMR (Fig. 3A), which 
may suggest a lower prediction sensitivity. For each tool, 
we also calculated the % DMRs that were confirmed by 
the other tools (Fig. 3B). It appears that 82% of the DMRs 
predicted by MethylC-analyzer were also confirmed by at 
least one other tool, higher than the proportions for BAT 
(48%) and Bicycle (56%). HOME reaches 96%, although 
the total number of predicted DMRs is very small.

In Additional file 2: Fig. S2, we present screenshots of 
the genome browser showing the predicted DMRs. The 
left and middle panels show the highly confident DMRs 
confirmed by multiple tools. The right panel shows a 
DMR that was predicted by MethylC-analyzer only and 
not by the other three tools. Overall, the results indicate 
that MethylC-analyzer might have a superior balance 
between sensitivity and specificity compared with the 
other tools.

Conclusions
We presented MethylC-analyzer, which is specifically 
designed for analyzing post-alignment WGBS and RRBS 
data. MethylC-analyzer is capable of profiling BS-seq data 
to compare the DNA methylation between two datasets. 
Compared with other bioinformatics tools, MethylC-
analyzer provides comprehensive analyses, including 
visualization of global methylation patterns, genome-
wide and gene-centric methylation distribution, DMR 
identification, and DMR enrichment analysis, incorporat-
ing most of the features found in similar published tools. 
MethylC-analyzer also comes with a user-friendly GUI 
and useful tutorials that will enable biologists to evaluate 
DNA methylation more effectively.
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CDS  Coding sequence
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DMG  Differentially methylated gene
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