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Abstract 

The Xylariaceae and its relatives rank as one of the best-known members of the Ascomycota. They are now well rec-
ognized for their diversity, global distribution, ecological activities and their outstanding novel metabolites with wide 
ranging bioactivity.
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Introduction
Professor Jack Rogers in his presidential address to the 
Mycological Society of America entitled ‘The Xylariaceae: 
systematics, biological and evolutionary aspects’ (Rogers 

1979) triggered an on-going fascination of a previously 
underestimated family of the Ascomycota. The cur-
rent authors are proud and honoured to be his follow-
ers. In his stimulating Benefactors’ Lecture to the British 
Mycological Society ‘Thoughts and Musings on tropical 
Xylariaceae’ he highlighted a number of aspects concern-
ing current knowledge and missing information. (Rogers 
2000). These included atypical morphological charac-
teristics in certain accepted genera, their relationship 
to water conservation, their components of ecosystems, 
speciation and geographical distribution in the tropics. 
In relation to tropical Xylariaceae he agreed with Corner 
(1993) that future investigations of tropical fungi should 
be by resident tropical mycologists since much of impor-
tance is missed by short term collectors. Rogers also 
stressed the importance and value of holding workshops 
in the tropics where specialist mycologists could transfer 
their knowledge and experiences to willing students. The 
current appreciation of the family draws on many of the 
points he raised and herein we attempt to fill in some of 
the gaps and to answer several questions he raised.

Systematic arrangement
Considerable changes to our understanding of the Xylari-
aceae and closely related families have occurred since 
the Publication of ‘A monograph of the world species of 
Hypoxylon’ (Miller 1961) and the epic publications on 
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Xylaria and relatives (Dennis 1956, 1961, 1970). Miller 
subdivided Hypoxylon into four sections Hypoxylon, 
Papillata, Annulata and Applanata with section Papil-
lata subdivided into Papillata and Primocinerea, His 
designation of the species was based entirely on morpho-
logical features of their teleomorphs. The introduction 
of electron microscopy and use of anamorphic char-
acteristics resulted in the recognition that many of the 
taxa belonged elsewhere. Many of the Applanata, when 
observed by scanning electron microscopy, were found to 
have ornamental spores of varying types (Rogers 1977). 
This resulted in these species being transferred to the 
genus Camillea Fr. (Læssøe et al. 1989) and further newly 
described species of Camillea have since been added 
(Rogers et  al. 1991; Whalley et  al. 1996, 1999). Major 
changes to sections Papillata and Annulata also fol-
lowed with applanate species possessing dark, coloured 
ascospores with germ slits being accommodated in the 
genus Biscogniauxia Kuntz whilst many of the Primoci-
nerea were transferred to Nemania S.F. Gray (Pouzar 
1985a, b). Jackrogersella L. Wendt, Kuhnert, & M. Stadler 
was later erected for those species formerly included in 
Hypoxylon sect. Annulata Ju and Rogers (1996) and the 
Annulohypoxylon Y.-M. Ju, J.D. Rogers & H.-M. Hsieh to 
accommodate the species with papillate ostioles and lack-
ing very conspicuous ostiolar disks (Wendt et  al. 2018). 
The situation regarding Xylaria Hill ex Schrank and its 
allies is more complex; at present there is no monograph 
of the genus Xylaria but, it is likely to be composed of 
over 500 species (Rogers pers. comm.). In attempts to 
make their identification more manageable, the genus 
was arranged in subgroups based on size of the stromata 
(Rogers and Ju 2012) and for leaf and petiole inhabiting 
Xylarias three groups were recognized (1) the X. fili-
formis group; (2) the X. phyllocharis group and (3) the X. 
heloidea group based on stromatal shape and/or the con-
spicuousness of perithecial mounds on the stromatal sur-
face (Ju and Hsieh 2023). The appreciation that presence 
or absence of chemical components was of taxonomic 
value (Whalley and Edwards 1995) initiated wide rang-
ing studies on the chemicals present in the Xylariaceae 
in the discovery of numerous novel compounds as sum-
marized by Marc Stadler and his colleagues (Stadler et al. 
2004; Stadler and Hellwig 2005; Stadler and Fournier 
2006). A major advancement was the introduction of 
high-throughput chemical profiling using HPLC pro-
files involving diode array detection and mass spectrom-
etry resulting in a vast library of chemical components 
in a wide-ranging selection of taxa from the Xylariaceae 
(Stadler and Hellwig 2005). Early molecular phyloge-
netic investigations of the Xylariaceae were solely based 
using DNA loci such as the internal transcribed spacer 
region (ITS) of the nuclear ribosomal DNA (rDNA) 

(Sanchez-Ballesteros et  al. 2000; Triebel et  al. 2005; 
Pelaez et al. 2008). The ITS region is generally accepted 
as the standard barcode of fungi and has proved useful 
in the identification and separation of closely related spe-
cies of Hypoxylon (Suwannasai et  al. 2013b). However, 
a number of studies found the application of ITS data 
alone failed to resolve the taxa in the hypoxyloid clades 
as a result of its limitations as a phylogenetically informa-
tive locus. Hsieh et al. (2005) focussing on Hypoxylon and 
allies and later Hsieh et al. (2010) targeting the xylarioid 
clades discarded ITS finding a better resolution when 
based on the protein-coding genes alpha-actin (ACT) 
and beta-tubulin (TUB2). Tang et al. (2009) were the first 
to apply a multigene phylogeny derived from a combi-
nation of rRNA and protein the coding genes ITS, LSU, 
and TUB2. Tang et al. (2009) also used the section “6–7” 
of the second largest subunit of the RNA-polymerase II 
gene (RPB2) often used for barcoding and phylogenetic 
purposes within the fungal kingdom. Unfortunately, 
there were many gaps in their phylogeny and shortcom-
ings in the selection of specimens or use of non-verifia-
ble sources of sequence data (Wendt et  al. 2018). Later 
Daranagama et  al. (2014, 2015) provided additional 
rDNA and RPB2 sequence data which addressed a num-
ber of these omissions. An impressive multigene phylog-
eny which followed, included key representatives of the 
main lineages in the Xylariaceae, provided a clear vision 
of the Xylariaceae segregated into several major clades 
(Wendt et al. 2018).

The currently accepted systematic arrangement of 
the Xylariales based on this multigene phylogeny con-
sists of the families Diarypaceae, Graphostromataceae, 
Hypoxylaceae, Lopdadostomataceae and Xylariaceae 
s.str. Detailed explanation of these proposals together 
with chemical and morphological characteristics, which 
are in close agreement with the molecular findings, pro-
vides a more stable taxonomy of the Xylariales (Wendt 
et al. 2018). There is, however, the problem of acquiring 
modern or fresh collections of a substantial number of 
genera which echoes the admirable comments of Cor-
ner (1993) and Rogers (2000) of the need to have resident 
mycologists in tropical countries. It is, therefore, encour-
aging to report that the position of Engleromyces Henn. 
is now settled (Zhou et al. 2021) and their findings agree 
with our own. Engleromyces sinensis fits closely in the 
clade containing species of Xylaria, Rosellinia, Kretzsch-
maria Fr. and Collodiscula Hino & Katumoto and places 
Engleromyces sinensis with Xylaria polymorpha (Pers.) 
Grev., which is its closest relative at a bootstrap value 
of 74 followed closely by C. fangjingshanensis Q.R. Li., 
J.C. Kang & K.D. Hyde, R. necatrix (Berl. ex Prill.) and 
R. aqulia (Fr.) De Not. (Sangvichien et.al. 2021 unpub-
lished. Figure  1). This confirms its rightful inclusion in 



Page 3 of 16Suwannasai et al. Botanical Studies           (2023) 64:15  

the family Xylariaceae and reduces one of the uncertain 
genera referred to by Rogers. There is still more to do 
since Anthostomella Sacc. has been shown to be hetero-
geneous based on a comprehensive molecular phyloge-
netic study involving four independent markers and that 
species are polyphyletic across Xylariaceae (Daranagama 
et al. 2016a). There are also other genera, such as Nema-
nia, Rosellinia, Stilbohypoxylon Henn., and Xylaria which 
may not be monophyletic (Hsieh et al. 2010; Stadler et al. 
2013; Daranagama et al. 2015; Rogers and Ju 2017). Sub-
sequently Rosellinia was split into Rosellinia s.str and 
Dematophora R. Hartig was resurrected for those taxa 
possessing anamorphs with synamata (Wittstein et  al. 
2020). Recognizing that there have been major changes 
in the systematics of the Xylariales Helaly et  al. (2018) 
updated current thinking and accepted 26 families.

The increased application of secondary metabolite 
profiling together with multigene sequence data, collec-
tion of material from tropical countries and from unu-
sual habitats has resulted in the discovery of many new 
xylariaceous taxa since ‘Thoughts and musings on the 

Xylariaceae’ (Rogers 2000). New species resulted from 
examination of ‘species complexes’ for example the 
Hypoxylon fuscum complex. Lambert et al. (2021) sub-
sequently examined collections of H. fuscum (Pers.) Fr. 
from Iran and Europe comparing morphological, chem-
otaxonomic, and phylogenetic evidence and described 
the new species of H. eurasiaticum Pourmoghaddam, 
Krisal-Greihuber & Khodapand., H. pseudofuscum 
Pourmoghaddam, Khodap. In the UK H. fuscum usually 
grows on Corylus forming hemispherical to pulvinate 
stromata on bark or frequently effused-pulvinate stro-
mata on decorticated wood. Collections made on Alnus 
or Betula deserve further examination since H. pseudo-
fuscum appears to be strongly associated with Alnus, 
Quercus and Salix with H. eurasiaticum mainly associ-
ated with Quercus, thus, highlighting the importance of 
the host identity (Lambert et  al. 2021). A good corre-
lation had been found to occur between host type and 
ascospore dimensions in H. fuscum sl by Petrini et  al. 
(1987) indicating a species complex and this has sub-
sequently been supported by chemical and molecular 
data (Lambert et al. 2021).

Fig. 1 Phylogenetic tree based on the combined analysis of LSU (large subunit ribosomal ribonucleic acid) and rpb2 (the second large subunit of 
RNA polymerase II) sequences based on maximum likelihood analysis. (Sangvichien et al. 2021, unpublished)



Page 4 of 16Suwannasai et al. Botanical Studies           (2023) 64:15 

Environmental considerations
Host preference: specific or preferred
There are several species of Xylariaceae which can confi-
dently be considered to exhibit host specificity although 
in many cases host preference is more appropriate. Exam-
ples of these include the bamboo inhabitants Englero-
myces goetzei Henn., E. sinensis M.A. Whalley, Khalil, 
T.Z. Wei., Y.J. Yao & Whalley, Xylaria badia, and Col-
lodiscula species. Petrini, in her scholastic monograph 
of Rosellinia, provided detailed records of species and 
hosts recognizing 21 species growing on bamboo (Petrini 
2013). We elect, however, to use the term host preference 
since detailed examination of host relationships in the 
Xylariaceae identifies a broader host range than previ-
ously registered. In the Nordic countries host range for 
both Jackrogersella multiformis and H. fuscum greatly 
exceed their usually recognized host ranges (Granmo 
et al. 1989). In view of the recent chemical and molecular 
data on H. fuscum, it would be enlightening to examine 
any taxa which display a wide host range, or which grow 
on previously unrecorded hosts (Lambert et al. 2021).

There are Hypoxylon species which clearly have host 
preferences such as H. fragiforme (Pers.: Fr.) J.Kickx 
on Fagus, H. cercidicola (Berk. & M.A. Curtis ex Peck) 
Y.-M. Ju & J.D. Rogers and H. intermedium (Schwein: Fr.) 
Y.-M. Ju & J.D. Rogers on Fraxinus and several others as 
detailed in the monograph (Ju and Rogers 1996). Other 
examples include Xylaria longipes Nitschke mainly found 
on Acer and Jackrogersella cohaerens (Pers.) L.Wendt, 
Kuhnert, & M. Stadler on Fagus There are also examples 
where the species are seen to be faithful to their host 
tree species. Dematophora buxi (Fabre) C. lambert, K. 
Wittstein & M. Stadler has been reported as occurring on 
Buxus sempervirens and is distributed in Southern France 
and Great Britain (Petrini 2013). However, it also occurs 
on the evergreen box B. colchinica in the Ritsa Strict 
Nature Reserve located in the mountainous part of Abk-
hazia in the southern part of the Greater Caucasus range, 
Georgia (Whalley and Hammelev 1988). Recently, it has 
been recorded from Iran, growing on B. sempervirens and 
is a new record for Asia (Pouroghaddam et al. (2023).

It is also important to note that Rogers et  al. (2002) 
considered seed and fruit-inhabiting species of Xylaria 
to be highly host-specific. Thus, Xylaria carpophila Fr. 
grows on fallen beech cupules, X. oxyacanthae Tul. on 
Crataegus seeds, X. magnoliae J.D. Rogers and X. magno-
liae var. microspora J.D. Rogers, Y.-M. Ju & A.J.S. Whalley 
on Magnolia species, X. liquidambar J.D. Rogers, Y.-M. 
Ju & F. San Martin on Liquidambar, X. jaliscoensis San 
Martin, J.D. Rogers & Y.-M. Ju on fruits of Leguminosae 
(Rogers et al. 2002; Whalley 1996). Undoubtedly, knowl-
edge of host specificity will change with the increasing 
number of studies on the Xylariaceae taking place.

Habitat
Wood inhabitants and decomposition
Most family members are wood inhabitants and are 
reported as developing stromata on fresh fallen wood or 
sometimes even on branches still attached to their host 
tree. Chesters (1950) referred to these as primary invad-
ers in the succession. In Fagus H. fragiforme is an early 
colonist and has been found to develop from pockets 
of decay within the wood where each pocket contained 
a genetically different individual (Chapela and Boddy 
1988a). They were present within the wood as inconspic-
uous fungal propagules which then developed as ‘latent 
invaders’ once the high-water content of the wood was 
reduced (Chapela and Boddy 1988a, b; Whalley 1996). 
There are, however, some species occurring only on well-
rotted and usually water-soaked decorticated wood such 
as Nemania confluens (Tode) Læssøe & Spooner ex Fr. 
West. and N. uda (Pers.) Gray. Interestingly both species 
are associated only with Quercus (Whalley 1996).

Various studies on wood decay by the Xylariaceae have 
shown that they can cause considerable weight loss and 
some species degrade lignin (Sutherland and Crawford 
1981) whilst others exhibit strong production of cellu-
lases (Wei et  al. 1992). Few Xylariaceae colonize conif-
erous wood with species of Rosellinia being prevalent 
(Rogers 1979; Whalley 1985). Their preferential degrada-
tion of the syringylpropane units of lignin might explain 
their general absence from coniferous trees (Nilsson and 
Daniel 1989).

Seeds and fruits
Species occurring on seeds and fruits are mainly from the 
genus Xylaria. Rogers (2000) discussed their high host 
selectivity and provided alternative views on their life-
style. The substrates could, as Whalley (1996) suggested, 
act as very specific baits in the litter layer but the fungus 
must be universally present in the locality of their hosts. 
They might, however, persist as endophytes on other 
hosts but to date no endophytic relationships have been 
proven. Rogers (2000), therefore, considered these fungi 
to be highly selective saprophytes or latent pathogens. 
Examination of more than 100 beech cupules collected 
from their host tree or those fallen onto tarmac or stone 
surfaces in areas where Xylaria carpophila occurred in 
nearby litter and soil never developed the Xylaria even 
after lengthy periods in damp chambers nor could they 
be isolated directly from the cupules. Visually uninfected 
cupules sampled from litter developed the Xylaria stro-
mata in the damp chambers within 5–6  weeks ‘incuba-
tion’ (Hearn 2000). This could well be the case for other 
Xylaria species on seeds and fruits but in contrast Rog-
ers et al. (2008) using a similar approach isolated cultures 
of X. oxyacanthae from seeds of Crataegus monogyna 
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caught prior to touching the ground or taken from the 
canopy and, although in low percentages, proved that 
the fungus infects the seeds while on the tree, probably 
by infecting the flowers. Later, Ju et al. (2018) stated that 
infection of the seeds appears to be through the flow-
ers and that this is also the case for X. magnoliae, X. liq-
uidambar and X. carpophila (Ju et  al. 2018). There are, 
therefore, still unanswered questions and until molecu-
lar techniques are applied to follow propagules, and for 
infections to be traced, the jury remains out.

Leaves
There are species of Xylaria which invade living leaves 
and petioles often fruiting on living material. Ju et  al. 
(2018) studied forty-five foliicolous and caulicolous taxa 
of Xylaria and described nine new species and three 
unnamed species on leaves. These were classified into 
three groups on the basis of their stromatal shape and 
on the level of the conspicuousness of their perithecial 
mounds: the X. filiformis group, the X. phyllocharis group 
and the X. heloidea group. Three new species of Xylaria 
on fallen leaves in Hainan Tropical Rainforest National 
Park have been recently described based on morpho-
logical and molecular evidence with each taxon occur-
ring on a specific host by Pan et al. (2022). The three taxa 
described, X. polysoricola H.X. Ma & X.Y. Pan, X. linderi-
cola H.X. Ma & X.Y. Pan and X. hedyosmicola H.X. Ma 
& X.Y. Pan are named after their host plants and were 
considered to be host specific. Thus, host specificity 
may prove to be an important feature of leaf and petiole 
inhabiting Xylaria species. This is also supported by the 
publication of three host specific Xylaria species from 
Puerto Rico with X. meliacearum Læssøe on petioles of 
Meliaceae, X. guareae Læssøe & Lodge on branches of 
Meliaceae and X. axifera Mont. restricted to petioles of 
plants in the Araliaceae (Læssøe and Lodge 1994). The 
authors also noted that X. axifera, although it is restricted 
to the petioles, apparently does not invade its host until 
after the leaves have fallen. This is perhaps a similar situ-
ation to those Xylaria species occurring on fallen fruits 
and seeds where there is no clear-cut evidence on their 
mode of infection. Is infection taking place in the leaves 
whilst still on the tree or does infection occur in the litter 
with the host material acting as a bait?

Pan et  al. (2022) also pointed out that ‘Especially, the 
study of Xylaria species growing on fallen leaves or 
petioles is far behind those taxa associated with other 
substrates’.

Ant and termite nests
There are many Xylaria species associated with ant and 
termite nests and usually the stromata only appear once 
the nest has been abandoned. The relationship between 

the Xylaria and the insect is still not known but it is 
postulated that the insects cultivate the fungus for food 
(Rogers 2000). He also made it clear that there are unde-
scribed species and that these need to be studied (Rogers 
2000). Our recent studies in Thailand recognized 12 new 
taxa of Xylaria associated with termite nests from North-
east Thailand based on morphological and cultural char-
acteristic and their ITS α-actin and β-tubulin sequences 
(Wangsawat et  al. 2021a). This finding emphasises the 
importance of resident mycologists in the tropics to 
investigate and to conduct regular surveys in specified 
habitats.

Dung
Xylariaceous fungi exhibiting a special relationship with 
dung are members of the genera Hypocopra (Fr.) J.Kickx, 
Podosordaria Ellis & Holw., Poronia Willd. and Wawelia 
Namys. They are united by ascospores possessing dark 
walls, sticky sheaths, and multinucleate condition resem-
bling those of their sordariaceous relatives (Rogers 2000). 
Wawelia is different and all five known species from 
Europe occur on mainly leporid dung associated with 
dry habitats (Webster et al. 1999). It has been suggested 
that this apparent rarity of Wawelia may be explained by 
its xerophilic nature and for its lack of records from field 
samples (Lundquist 1992). Usually, it is only recorded 
after incubation in damp chambers in the laboratory 
(Webster et al. 1999). Sadly, but perhaps, because of the 
short-lived appearance of their fruit bodies in the field, 
the dung Xylariaceae have been neglected, especially in 
the tropics. In their account of Hypocopra Krug and Cain 
(2011) reported on 14 new species of Hypocopra from 
9 different animal dung samples recorded from a total 
of 12 different countries, including tropical Mexico and 
Kenya. Stromatoneurospora phoenix (Kunze) S C. Jong 
& E.E. Davis has now been shown to have affinities with 
the coprophilous Xylariaceae, based on morphological, 
molecular, and chemical data (Becker et  al. 2020). This 
confirms the earlier suspicions of Rogers (2018) that S. 
phoenix, although an inhabitant of burnt grasses, is a 
relative of the coprophilous Xylariaceae and Becker et al. 
(2020) placed S. phoenix close to Poronia in their phy-
logeny. It did not, however, produce the punctaporonin 
metabolites present in Poronia (Anderson et  al. 1988; 
Becker et al. 2020).

Rogers et  al. (1998) described Podosordaria elephanti 
J.D. Rogers & Y.-M. Ju. on elephant dung from Chacho-
engsao Province in Thailand but as far as we are aware it 
has subsequently only been reported from India together 
with Poronia pileiformis (Berk.) Fr. on elephant dung 
(Deepa Latha and Manimohan 2012). Studies on copro-
philous fungi in Thailand based on samples from 13 dif-
ferent animal species collected from 14 localities were 
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undertaken using damp chamber incubation or soil plate 
isolation. A total of 68 isolates were obtained belonging 
to 12 genera and 15 species of coprophilous ascomycetes 
(Jeamjitt et  al. 2007). Interestingly, P. elephanti was not 
recorded and Podosordaria leporina (Ellis & Everh.) Den-
nis was the only member of the Xylariaceae reported. 
Richardson (2021) stressed the importance of frequent 
sampling and recording at the selected sites and noted 
that some fungi preferred different types of animal dung 
such as horse, sheep, rabbit, or grouse.

Adaptation to dry environments and strategies for water 
conservation
The recognition that members of the Xylariaceae are 
often associated with dry habitats was highlighted by 
(Rogers 1979; Whalley 1985, 1996). Rogers, in his Presi-
dential address to the Mycological Society of America 
(Rogers 1979), hypothesized that various xylariaceous 
lifestyles developed on periodically dry sites and he sum-
marized the different types of adaptations to the relation-
ship of perithecial stromata to substrate. These included 
stromata embedded in decayed wood, stromata super-
ficial but borne in a subiculum, stromata embedded in 
dung, stromata erumpent from bark via a dehiscent outer 
stromatal layer, the presence of gelatinous material or 
possessing massive stromata (Rogers 2000). The genus 
Daldinia Ces. & De Not. is characterized by concentric 
zonation and Ju et al. (1997) emphasized the importance 
of the zones and its xerophilic habitat indicating that the 
concentric zones in Daldinia stromata are, in their opin-
ion, the key to its xerophilic habitat. They also stated that 
when the zones are initially formed, they tend to be dense 
and more or less gelatinous. As stromata age the zones 
lose their density and collapse or at least become rid-
dled with lacunae’. Ju et al (1997) showed that these zones 
were not a result of aborted perithecia which agrees with 
Stadler et  al. (2014) and is not a result of aborted peri-
thecia as suggested by Bayliss-Elliot (1917). Light and 
scanning electron microscopy proved that zonation is, 
however, a result of the regular alternation of the zones 
caused by changes in orientation of hyphal growth 
(Khalil et  al. 2015; Fig.  2). This would, in our opinion, 
slow down the movement of water from the stromal base 
still attached to the host and the regular finding of Dal-
dinia species on large fallen trunks or on recently dead or 
dying trees in exposed or dry situations and is consistent 
with their xerophilic nature. Daldinia concentrica (Bol-
ton) Ces. & De Not. on fallen Fraxinus, its usual host in 

the UK, has been observed to develop over several years 
to maturity in water stressed environmental conditions. 
In Europe D. caldariorum Henn. is only found on burnt 
and weathered gorse, Ulex europaeus, which is another 
water stressed environment (Khalil et al. 2015). In Thai-
land and Malaysia, it is usual to find D. eschscholtzii 
(Ehrenb.) Rehm growing on a log pile or on fallen trunks 
or large branches in clearings in the forest where they 
are exposed to the sun and therefore experience periodic 
drying (Whalley 1996). Daldinia species found in Papua 
New Guinea were restricted to open and extremely dry 
sun-exposed sites (Van der Gucht and Whalley 1996). 
Entonaema A. Möller is now recognized to consist of 
hypoxyloid and xylarioid species with the xylarioid forms 
being transferred to Xylaria (Stadler et  al. 2008). It is 
often present in similar situations to Daldinia, occurring 
on large logs in dry habitats, and is closely related to Dal-
dinia (Rogers 2018; Stadler et al. 2004).

The stromata are filled with liquid when fresh but 
become hollow when dry. Ju et al. (1997) argued that the 
water presumably fills an expanding cavity with gel lined 
walls and that it seems possible that Entonaema has dis-
pensed with rings altogether, using turgor pressure gen-
erated by gels to both expand the stroma and store water. 
Both Daldinia and Entonaema exhibit an astute water 
regulation which enables them to develop to maturity.

Edwards et al (2003) summarized many reports about 
canker diseases caused by Biscogniauxia and Camillea 
in stressed trees growing in dry spots in a forest environ-
ment and is discussed herein under plant diseases. Fur-
thermore, Wawelia species are associated with leporid 
dung and, as discussed under dung inhabiting Xylari-
aceae, Wawelia species are xerophytic and rarely found in 
the field being recorded in the laboratory following damp 
chamber incubation (Webster et al. 1999).

The significance of dry environments as a habitat for 
xylariaceous fungi in relation to the Xylariaceae is well 
shown by several surveys in Kuala Selangor Nature Park 
in Malaysia. The park contains a wide variety of habi-
tats including mangrove forest, secondary forest, estu-
ary, mud flats and brackish water lake system. Since the 
first survey in 1993 there has been a continuing change 
in the abundance of tree species as the water table has 
become lower. In the secondary forest where the surveys 
were carried out there has been a noticeable increase of 
species of strangler figs, Ficus macrocarpa L. becom-
ing superseded by F. gibbosa Blume which is hardier 
and more aggressive (Whalley et  al. 2002; Whalley and 

Fig. 2 Images of Xylariaceae and relatives. A. Stroma of Daldinia eschscholtzii. B. Hyphal zonation in Daldinia concentrica (SEM). C, F, G, Hyphal 
elements from the three zones highlighting change in hyphal orientation in D. concentrica. D. Xylaria fockei (Miq.)Cooke Stromata. E. X. margaretae 
Wangsawat, N, Y.-M. Ju, Phosri, C, Whalley, A.J.S. and Suwannasai, N. stromata. H. J. multiforme stromata. I. R. lekae. stromata. J. Hypoxylon 
haematostroma Mont. K. E. sianensis stromata. L. C. selangorensis. M. P. puncata. Stromata

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Whalley 2007). Over the 4 visits to the park (1993, 1995, 
1997 and 2000) 35 taxa representing 8 genera of Xylari-
aceae were recorded. In the Park, certain taxa were asso-
ciated with specific hosts or were only found in particular 
situations. Daldinia eschscholtzii only occurred on large 
fallen logs and our observations in Kuala Selangor Nature 
Park and at other sites in Malaysia and Thailand indicate 
that Daldinia occurs most frequently in open parts of 
the forest, in tree fall areas, by paths or in log piles – all 
drier sites within the forest ecosystem (Thienhirun 1997; 
Whalley et al. 1999; Thienhirun and Whalley 2004). The 
Park is also the type locality for Camillea selangorensis 
M.A. Whalley, A.J.S. Whalley & E.B.G. Jones which was 
collected in 1993. During the 1997 survey eight collec-
tions of C. selangorensis were obtained, all from freshly 
fallen branches of F. macrocarpa lying on the forest floor. 
Similar findings were obtained in the 2000 survey. Fur-
thermore, as the secondary forest continued to become 
drier increased collections of Hypoxylon, Biscogniauxia 
and Nemania were made (Whalley et al. 2002).

Representatives of twelve genera of Xylariaceae have 
been recorded from mangroves in Malaysia and Thai-
land (Whalley et al. 1994; Chareprasert et al. 2012) and 
Halorosellinia oceanica (Schatz) Whalley, E.B.G. Jones, 
K.D. Hyde & Læssøe from Florida is now recognized as 
a common and widespread mangrove species (Whal-
ley et  al. 2000). A series of publications by E.B.G. Jones 
and K.D. Hyde have over the last 25 years provided new 
insight into marine and mangrove fungi. These include 
several new genera and species of the Xylariaceae (Hyde 
1990, 2007; Whalley et  al. 1994; Jones 2007; Jones and 
Kuthubutheen 1990; Lu and Hyde 2000). Species of 
Anthostomella Sacc. and Nemania are widely distrib-
uted mangrove fungi and a further eleven xylariaceous 
genera have been recorded (Chareprasert et  al. 2012). 
Devadatha et  al. (2021) reviewed the many publications 
regarding their taxonomy, occurrence, and geographical 
distribution.

Ecological situation and lifestyle strategies
Xylariaceae and plant disease
Generally, the Xylariaceae are not strongly pathogenic 
but are basically facultative parasites being opportunis-
tic and weakly pathogenic (Whalley 1996; Edwards et al. 
2003; Rogers 2000, 2020). Diseases can be separated into 
needle blights, root infections and canker diseases.

Needle blights are linked with species of Rosellinia 
and young conifer trees growing in forest nursery beds. 
They can locally result in serious damage to the plants 
especially in overcrowded conditions where there is pro-
longed high humidity (Francis 1986; Ten Hoopen and 
Krauss 2006). Francis (1986) concluded that many of the 
reported outbreaks were caused by R. minor (Hohm.) 

S.M. Francis especially in crowded, humid conditions and 
not R. herpotrichoides Hepting & R.W. Davidson as was 
frequently cited as the culprit. Rosellinia herpotrichoides 
is noted to occur on Tsuga branches in more open situ-
ations rather than in overcrowded and humid environ-
ments and is restricted to the USA (Petrini 2013).

Root rot infections are caused by a very diverse range 
of Xylariaceae with Dematophora and Kretzschmaria 
species being the most widespread and economically 
important. Kretzschmaria clavus (Sacc.) Fr. causes a seri-
ous root decay in macadamia (Macadamia intergrifolia 
Maiden, & Betche) in Hawaii (Ko et al. 1977) and Taiwan 
(Ann and Ko 1988). Kretzschmaria clavus is widespread 
in the tropics and subtropics (Whalley 1993, 1996) and 
occurs on a wide variety of forest trees which led to the 
speculation that these provided an infection source for 
the macadamia (Ko et  al. 1986). Another species, K. 
zonata (Lév.) P.M.D. Martin has long been recognized as 
causing a serious root rot in rubber trees (Vargese 1971) 
and has since been reported to be an important problem 
in South Indian rubber plantations although it could be 
controlled by application of fungicides and petroleum 
wound dressings (Idicula et al. 1990). In Britain K. deusta 
(Hoffm: Fr.) P.M.D. Martin causes rot at the bases of a 
variety of tree trunks (Burdekin 1977) and can become 
locally of economic significance. In the Sara mountains of 
Yugoslavia an infection rate of up to 42% in beech trees 
has been observed in some localities (Prljincevic 1982) 
and in Czechoslovakian forests 11–20% of beech trees 
were infected by this fungus (Cerný 1970; 1975). Species 
of Dematophora are a major cause of white root rots or 
brown rots in numerous plant species (Sivanesan and 
Holliday 1972a, b,). Dematophora necatrix R. Hartig is 
reported as a plurivorous pathogen with world-wide dis-
tribution (Sivanesan and Holliday 1972b).

Canker diseases of trees are usually linked to drought 
conditions or to damage caused by insects e.g., Enton-
aema mammata (Wahlenberg) J.D. Rogers & Y.M. Ju 
or previous infections by wilt causing fungi. In quaking 
aspen, the gall forming insect Saperda inornata provides 
infection wounds for E. mammata (Anderson et al. 1979) 
or canker by Biscogniauxia nothofagi Whalley, Læssøe & 
Kile on Nothofagus cunninghamii previously infected by 
Chalara australis Walker & Kile (Whalley et  al. 1990). 
Many of the fungi involved in these canker diseases are 
former members of the Xylariaceae belonging to the gen-
era Biscogniauxia O. Kuntze and Camillea Fr. but now 
placed in the Graphostromataceae (Wendt et  al. 2018). 
Canker diseases caused by members of these two genera 
have been reviewed with indications of strong associa-
tions with water stressed hosts (Edwards et al. 2003).

Entoleuca mammata (Wahlenberg) J.D. Rogers & Y.M. 
Ju is, however, an important cause of canker in quaking 
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aspen (Populus tremuloides Michx) responsible for a 
major loss of young trees in the forests of the Lake States 
of the USA (Manion and Griffin 1986). Marty (1972) 
attempted to determine the cost of Hypoxylon canker 
in the region and indicated at the time of harvesting the 
loss amounted to US$4.4 million per year. Although the 
Xylariaceae are not normally regarded as the cause of 
plant diseases there are a number of species which result 
in considerable economic loss and from time to time 
there are reports, often local, of significant damage.

In many of the diseases there is a clear relationship 
between the host and water stress. Several species of Bis-
cogniauxia and Camillea cause cankers in water stressed 
trees. In cork oak and B. mediterranea (De Not.) Kuntze 
in Southern Europe (Vannini and Scarascia Mugnozza 
1991), and B. nummularia (Bull: Fr.) Kuntze) with beech 
in Sicily (Granata et  al. 1996). In the southern states of 
North America B. atropunctata (Schwein.) Pouzar causes 
a serious drought related disease on oaks (Thompson 
1963; Bassett and Fenn 1984). Also, in the USA, Camillea 
punctulata (Berk. & Rav.) Læssøe, J.D. Rogers and Whal-
ley infects oak in south eastern U.S.A. where it is linked 
with trees which are water stressed following prior infec-
tion with the oak wilt fungus Ceratocystis fagacearum 
(Bretz) J. Hunt (Davis 1964) and C. tinctor (Berk.) 
Læssøe, J.D. Rogers and Whalley is associated with can-
ker of American sycamore (McAlpine1961) and plane 
(Hepting 1971). Perhaps the strangest association, how-
ever, must be that observed between Hypoxylon rubigi-
nosum (Pers.) Fr. and catalpa which was reported from 
the campus of the University of Georgia USA (Weidell 
1942). Local fishermen obtain the catalpa worm (Cerao-
mia catalpae) for bait by beating the trunks of the trees 
with clubs to dislodge them, thus causing localized injury 
leading to the development of cancer caused by Hypoxy-
lon (Weidell 1942).

Endophytes
Over the past several decades there has been a pleth-
ora of publications on endophytes with members of the 
Xylariaceae prominently reported (Petrini and Petrini 
1985). A study following the development of endophytes 
in leaves of Tectona grandis L. (teak) in Chang Mai Prov-
ince at the beginning of the rainy season endophytic 
Xylariaceae proved to be the most frequent (Mekkamol 
et  al. 1997; Mekkamol 1998). Daldinia eschscholtzii, N. 
bipapillata (Berk. & M.A. Curtis) Pouzar, H. haematos-
troma (Mont) Fr.. and X. cubensis (Mont.) Fr. were fre-
quent isolates with Daldinia being detected early in the 
rainy season and Xylaria species occurred later. The over-
whelming number of publications on endophytes makes 
it impossible to do them justice here. This major interest 
in endophytes was certainly stimulated by the discovery 

of many novel compounds and the promising leads in 
new drug discovery (Helaly et  al. 2018). There was also 
the earlier discovery that the anti-cancer drug, taxol, was 
produced by the endophyte Taxomyces andreanae.Sro-
bel, A. Stierle, D. Stierle, & W.H. Hess from Taxus brevi-
folia Nutt., Pacific yew (Stierle et al. 1993). This was later 
shown to belong to the basidiomycete genus Ceriporiosis, 
not to a hyphomycetous genus, and was re-assigned as C. 
andreanae (Strobel et al. 1996) T. Cheng and M. Stadler 
(Cheng et  al. 2022). The number of reports on metabo-
lites from endophytic Xylariaceae and relatives, coupled 
with their recognition as a major source of novel chemi-
cals with bioactive properties, has undoubtedly been the 
driving force stimulating these investigations (Stadler and 
Hellwig 2005; Becker and Stadler 2021; Wongkanoun 
et  al 2020). Endophytic Xylariaceae are undoubtedly 
widespread worldwide and have been isolated from a 
very diverse host range and their track record as a source 
of many novel and bioactive compounds will ensure 
many more studies will follow. Becker and Stadler (2021) 
noted that many of the recent discoveries of novel metab-
olites originated from endophytic isolates of Xylaria. It 
is noteworthy that although endophytic Xylariaceae and 
their relatives appear almost ubiquitous the situation 
of the host plants sampled is of primary importance. A 
study of endophytes on Cassia fistula L. (golden shower) 
in Thailand involved sampling in 3 geographical sites to 
allow comparisons between their endophytic assem-
blages and to evaluate these data in relation to differences 
in plant diversity, density and the local environment. 
Overall, members’ species of Xylaria and Daldinia were 
most frequently isolated but representatives of Nema-
nia and Hypoxylon were also recorded (Ruchikachorn 
2005). The Kanchanaburi site, being closest to a natu-
ral forest situation, provided the highest number of iso-
lates whereas the Bangkok site, characterized by isolated 
individuals, yielded least (Ruchikachorn 2005). Surveys 
of mangrove forest tress growing in different locations 
(Chanthaburi Province, Prachuap Khiri Khan Prov-
ince and Rayong Province in Thailand) revealed that the 
dominant endophytes varied by host type. Phyllosticta 
was the most frequently isolated endophyte, but several 
different Xylaria species were obtained from several tree 
species. Although the percentage frequency of Xylaria 
was low, D. eschscholtzii was, however, a regular isolate 
from Ranong mangrove achieving 7.33% on Xylocarpus 
granatum Koen. and 6.67% on Rhizophora apiculata Bl. 
of all isolates (Chareprasert et  al. 2010). Screening of 
crude extracts for antimicrobial and toxicity against a 
selection of cancer cell lines suggested that investigation 
of the metabolites from some isolates would be worth-
while (Chareprasert et al. 2010; Sujarivorakol et al. 2011).
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Geographical distribution
Assessing global distribution of fungi is fraught with 
problems as fungi are ephemeral and often their records 
are based on the collector being in the right place at 
the right time (Watling 1978). The importance of sea-
son in relation to rainfall in the tropics was stressed by 
Corner (1993). Whilst this is certainly true of the fleshy 
fungi of the Basidiomycota many of the Ascomycota are 
more resilient and exhibit extended ‘fruiting’ periods 
and are therefore more persistent in nature. Many mem-
bers of the Xylariaceae have a carbonaceous stroma, are 
more robust or have developed strategies for inhabiting 
dry environments and this, coupled with a considerable 
increased interest in the family and its allies increases the 
likelihood that xylariaceous fungi are recorded. It does, 
however, need to be emphasized that their distribution 
records are mainly based on the presence of their tele-
omorphs and as they appear to be almost ubiquitous as 
endophytes this is an important consideration. Caution 
is also required when comparing distribution between 
regions and there is a need to consider how many differ-
ent habitats were surveyed and how frequently; collec-
tor bias is often a problem (Van der Gucht and Whalley 
1996). As stressed by both Corner (1993) and Rog-
ers (2000) the importance of resident mycologists well 
acquainted with the Xylariaceae is an important consid-
eration. This is well supported by the impressive collect-
ing and publications by K.D. Hyde and his co-workers 
in S.E. Asia and China over a 20  year period. This has 
greatly increased our understanding of the Xylariaceae 
and related families (Daranagama et al. 2016b).

Despite these current limitations several distribu-
tion patterns can now be recognized with some confi-
dence (Van der Gucht and Whalley 1996; Suwannasai 
et al. 2013a). These have been supported by monographs 
of many genera, increased surveying and application 
of molecular techniques to clarify species complexes 
(e.g., H. fuscum). Xylaria is the only major genus await-
ing a World monograph. In certain genera distribution 
is tropical or subtropical whilst others occur in temper-
ate countries. There are also those found mainly in either 
the North or South hemispheres. Camillea has for many 
years been considered generally restricted to the Amazon 
region. Now that there is a modern monograph, several 
species placed in Hypoxylon (Miller 1961) were trans-
ferred to Camillea and they occur in Mexico and the 
southern states of the U.S.A. (Læssøe et  al. 1989). The 
publication of two new species, C. selangorensis M.A. 
Whalley, A.J.S. Whalley & E.B. G. Jones (Whalley et  al. 
1996) and C. malayasianensis M.A. Whalley (Whal-
ley and Whalley 2007) has shed new light on distribu-
tion outside of the Americas. These two new Camillea 
species originated from the Kuala Selangor Nature Park 

(Malaysia) in secondary forest where the mangrove is in 
decline (Whalley et al. 2002). Camillea selangorensis has 
since been recorded from Thailand in secondary forest in 
Phuket also bordering mangroves (Whalley et  al. 1999). 
Camillea tinctor is the one species which has a wide-
spread distribution (Læssøe et  al. 1989; Whalley et  al. 
1999). Miller reported on a collection of C. tinctor from 
Singapore as the applanate Hypoxylon tinctor but was 
doubtful about its origin (Miller 1961). However, more 
recent collections from Papua New Guinea (Van der 
Gucht 1995), Malaysia and Thailand (Thienhirun 1997; 
Whalley et  al. 1999) confirm that it is truly pantropical 
and probably common. It was recorded from eight sepa-
rate localities in Thailand, six in Malaysia and ten collec-
tions from Papua New Guinea (Whalley et al. 1999; Van 
der Gucht and Whalley 1996) and from Taiwan (Ju 2000).

There are also those species which follow their host 
plant species. Annulohypoxylon bovei (Speg.) Y.M. Ju, 
J.D. Rogers & H.M. Hsieh was originally described from 
Argentina, but is also known from Australia, Indonesia, 
and New Zealand, probably associated with Nothofa-
gus species (Ju and Rogers 1996). Xylaria castorea Berk. 
is known from South America and New Zealand and ‘it 
seems probable that both of these species have been dis-
tributed along with Nothofagus in part by repositioning 
of land masses’ (Rogers 2000). Surprisingly, A. bovei has 
been reported from the Hawaiian Islands on Eucalyptus, 
not the usual Nothofagus (Rogers and Ju 2012).

Dematophora buxi Fabre is another species faithful to 
its host being recorded from France, UK and Georgia 
in the former USSR (Petrini 2013; Whalley and Ham-
melev 1988). Examination of mature box trees in other 
countries may prove to be worthwhile. Host and local-
ity are also important. When Engleromyces goetzei Henn. 
was described from East Africa in 1890 it immediately 
became recognized as one of the largest and most spec-
tacular pyrenomycetes known. It remained the only spe-
cies in the genus until E. sinensis M.A. Whalley, A. Khalil, 
T.Z.Wei, Y.J. Yao and A.J.S. Whalley was added in 2010 
(Whalley et  al. 2010). Earlier records of E. goetzei from 
China proved to be E. sinensis although interestingly 
both species occur on mountain bamboo at altitudes of 
over 2000 m above sea level.

Hypoxylon fragiforme occurs on Fagus in temper-
ate regions but the very similar but smaller spored 
H. howeianum Peck has a cosmopolitan distribution 
on a variety of hosts (Ju and Rogers 1996). Jackroger-
sella cohaerens is also common on Fagus in temper-
ate regions whilst the smaller spored J. cohaerens var. 
microsporum has a wide geographic and host range (Ju 
and Rogers 1996; Wendt et al. 2018). Rogers speculated 
that the presence of species with larger ascospores 
in the cooler regions might be associated with food 
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reserves of the larger ascospores and longer periods of 
dormancy in cooler environments (Rogers 2000).

We are reluctant to list species which might be 
endemic and although there are many which at pre-
sent are only known from their type locality a number, 
which in the past were considered to be endemic, or 
at least restricted, might have been included, but have 
subsequently been found in quite distant localities. 
Thus, H. vandervekenii first described from Papua New 
Guinea (Van der Gucht et al. 1997) has now been col-
lected in the Hawaiian Islands (Rogers and Ju 2012) and 
B. anceps which was originally reported from Italy is 
widespread in France, occurs in the British Isles, Hon-
duras (Rogers et  al. 1996) and Mexico (Ju et  al. 1998). 
We are fully in agreement with Trierveiler-Pereira et al. 
(2009) who stated that ‘Although Xylaria is considered 
one of the best-known genera in the family nearly 65 
new species of Xylaria have been described during the 
past 20  years, 25 of which have been described since 
the year 2000’ and our data shows the importance of 
continuous studies on the genus, especially in the trop-
ics, where Xylaria diversity is very high. Over a similar 
period, impressive details are given on new genera of 
Xylariaceae (Wendt et  al. 2018). These include Brun-
neiperidium Daranag., Camporesi and K.D. Hyde, Con-
iolariella Dania Garcia et al., Emarcea Duong, Jeewon 
and K.D. Hyde, Halorosellinia Whalley, E.B.G. Jones, 
K.D. Hyde and T. Læssøe, Lunatiannulus Darang., 
Camporesi and K.D. Hyde, Anthocanalis Darang., 
Camporesi and K.D. Hyde, Alloanthostomella Durang., 
Camporesi & K.D. Hyde, Appendixia B.S. Lu and K.D. 
Hyde, Camporesia W.J. Lu and K.D. Hyde, Cannonia, 
Joanne E. Taylor and K.D. Hyde. It should be noted that 
some of these taxa need to be verified through addi-
tional data (Stadler and Hellwig 2005). Daranagama 
et  al. (2016b) posed the question ‘Do xylariaceous 
macromycetales make up most of the Xylariomyceti-
dae?. They compared macro- xylariaceous genera with 
micro-xylariaceous genera, i.e., those with inconspicu-
ous ascomata and asexual anamorphs and provided a 
valuable table of the genera from both groups together 
with an extensive bibliography.

Since 2014 thirty new species of members of the 
Xylariaceae have been reported from Thailand alone: 
which is a reflection on the increased interest and 
research in these fungi especially in the tropics (Dai 
et  al. 2014; Srihanant et  al. 2015; Li et  al. 2016; Tib-
promma et  al. 2017; Ju et  al. 2018; Dayarathne et  al. 
2020; Konta et  al. 2020; Wongkanoun et  al. 2020; 
Wangsawat et al. 2021a).

An equally impressive number of species have also 
been added mainly from Southeast Asia and China by 
K.D. Hyde and co-workers (Dai et al. 2014; Li et al. 2016; 

Tibpromma et  al. 2017; Dayarathne et  al. 2020; Konta 
et al. 2020; Ma et al. 2023).

In Papua New Guinea the species composition of the 
Xylariaceae depended strongly on habitat characteristics. 
Overall, Kretzschmaria, Nemania and many Xylaria spe-
cies occurred in dense, shaded sites, whereas the genus 
Biscogniauxia and several Hypoxylon species were more 
abundant in relatively dry and open sites. This is in gen-
eral agreement with reports from Malaysia (Whalley and 
Whalley 2007), Thailand (Thienhirun 1997; Thienhirun 
and Whalley 2004), Mexico (Gonzalez and Rogers 1993). 
There are, however, problems in comparison of differ-
ent regions because of the selection of different habitats 
within the ecosystem. In general, tropical Xylariaceae 
are good dispersers, and their preferred habitat charac-
teristics differ largely between genera as well as species 
(Van der Gucht and Whalley 1996). We note that C. tinc-
tor is the only member of the genus, which is widespread 
worldwide, and from our experience, it is the only species 
in which ascospores are readily germinated which might 
be part of the explanation. The importance of precise 
environmental habitat is well illustrated by Engleromyces 
sinensis and R. diathrausta (Rehm.) L.E. Petrini which 
both exhibit adaptations to life in cooler situations. They 
occur at high altitudes and the ascospores of E. sinensis 
can only be germinated at low temperature (Whalley 
et al. 2010) and those of R. diathrausta at temperatures 
below zero (Ouellette and Ward 1970). Stromata of R. 
diathrausta are regularly found on dry, weather exposed, 
on still-attached branches of alpine pines growing above 
1800 m.asl (Petrini 2013).

Chemical diversity and bioactivity
There is no question that the Xylariaceae provide a 
rich and diverse range of secondary metabolites. Many 
of these have been found to be novel and a consider-
able number have proved to exhibit bioactive proper-
ties (Stadler and Hellwig 2005). In their review (Helaly 
et  al. 2018) noted the occurrence of 576 metabolites in 
the Xylariaceae and their related families and since then 
a range of other metabolites have been added by various 
authors as detailed by Becker and Stadler (2021).

Early studies on metabolites of the Xylariaceae 
reported that Daldinia concentrica produced perylene 
quinones (Allport and Bu’lock 1958, 1960) and Rosellinia 
necatrix cytochalasin E (Aldridge et al. 1972). These were 
followed by a series of publications by Edwards and his 
collaborators, at first extracting from stromata, then 
followed by broth cultures grown under static condi-
tions for 6 weeks at room temperature. The compounds 
reported included the butyrolones (Edwards and Whal-
ley 1979), serpenone (Anderson et  al. 1982a), chester-
siene (Anderson et  al. 1982b), dihydroisocoumarins 
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(Anderson et al. 1983), puntaporonines (Anderson et al. 
1988), cubensic acid (Edwards et al. 1991). The presence 
or absence of these metabolites and others were shown to 
be of taxonomic importance as summarised by Whalley 
and Edwards (1995). Recognition of their significance in 
the classification of the Xylariaceae subsequently resulted 
in many significant publications on metabolites of the 
Xylariaceae based on high performance liquid chroma-
tography coupled with diode array detection and mass 
spectrometric detection (HPLC–DAD/MS) in Stadler 
and Hellwig (2005) and Stadler and Fournier (2006). 
This has resulted in the discovery of over 150 second-
ary metabolites (Stadler and Hellwig 2005; Stadler 2011; 
Kuhnert et  al. 2017; Helaly et  al. 2018). The addition of 
chemical data to multigene sequences has now pro-
vided a comprehensive understanding of relationships 
within the Xylariaceae and their relatives and resolved 
several uncertain aspects in their existing classification 
(Wendt et  al. 2018). Several bioactive metabolites have 
been reported from Xylariaceae and relatives that have 
been collected from Thailand such as mero-type triter-
penoids, pyrazinoquinazolinone alkaloids and cytocha-
lasin derivatives (from X. humosa Llyod, X. cf. cubensis 
(Mont.) Fr.PK108, X. cf. cubensis SWUF08-86, X. allan-
toidea (Berk.) Fr. SWUF76, and X. sp. SWUF08-37) all 
of which exhibited a degree of toxicity ̷against human 
cancer cell lines (KB, MCF-7 and NCI-H187) (McClo-
skey et  al. 2017; Noppawan et  al. 2020; Sawadsitang 
et  al. 2015, 2018; Sodngam et  al. 2014). Several isocou-
marin and chromones from X. sp. SWUF09-62 showed 
both cytotoxicity against cancer cells and strong anti-
inflammatory activities (Patjana et  al. 2021). There is a 
hypothesis that chronic inflammation may lead to the 
initiation of cancer, meaning that a compound having 
both activities could be a chemoprevention and chemo-
therapeutic drug candidate. Recent research published 
on former members of the Xylariaceae, belonging to the 
genera Biscogniauxia and Annulohypoxylon, reported 
several compounds including diorcinol, cordyol C, vio-
laceol I, aspergillusene A from Annulohypoxylon stygium 
(Lév.) Y.-M. Ju, J.D. Rogers & H.M. Hsieh SWUF09-030 
and bergamotene, guaiane, phthalide derivatives from 
Biscogniauxia whalleyi N.Wangsawat, C. Phosri and N. 
Suwanassai SWUF13-085 which showed both cytotoxic 
and anti-inflammatory activities (Pimjuk et al. 2021; Jan-
taharn et  al. 2021). In addition, 2-hydroxyphenylacetic 
acid methyl ester, isolated from Annulohypoxylon spougei 
Suwannasai, M.P. Martin, Phosri & Whalley showed sig-
nificant effects against both radish and ruzi grass radicle 
elongation, which were comparable to the commercial 
herbicide, glyphosate (Pimjuk et al. 2022). The Xylariales 
are a well proven source of bioactive compounds includ-
ing antibiotics, antimalarials, antioxidants, anticancers, 

nemicidals, phytotoxins and for exhibiting other activi-
ties (Whalley 1996; Stadler and Hellwig 2005; Helaly et al. 
2018; Wangsawat et al. 2021b). As stated by Helaly et al. 
(2018) the ‘Xylatiales contain genera which constitute 
one of the most prolific sources of secondary metabo-
lites in the fungal kingdom’. They are arguably among the 
predominant fungal endophytes which are the producer 
organisms of pharmaceutical lead compounds includ-
ing the antimycotic sordarins and the antiparasitic nod-
ulisporic acids, as well as the marketed drug, emodepside 
(Helaly et al. 2018). It is, therefore, hardly surprising that 
with this impressive track record investigations of their 
metabolites are ongoing in many different parts of the 
world. Our studies on crude extracts from stromatic and 
endophytic Xylaria species in Thailand have indicated 
both promising antioxidant, antimicrobial and anticancer 
activities (Orachaipun et  al. (2015a); Orachaipun et  al. 
2015b; Pharamat et al. 2013).

Conclusions
The publication ‘The Xylariaceae: systematic, biologi-
cal and evolutionary aspects (Rogers 1979)’ initiated an 
increased awareness about the Xylariaceae and Ascomy-
cota in general. The monumental ‘Thoughts and musings 
on tropical Xylariaceae (Rogers 2000) stimulated a review 
on the xylariaceous mycobiota of Taiwan (Ju 2000) and 
has stimulated the publication of monographs of many 
genera, erection of new genera and descriptions of 
numerous new species. The recognition that their metab-
olites could be useful taxonomic markers (Whalley and 
Edwards 1995) led to extensive studies on their chemistry 
Stadler and Hellwig (2005) and their biological potential 
(Becker and Stadler 2021; Helaly et  al. 2018). Chemical 
profiles in combination with multigene sequencing has 
resulted in a more natural and clearer classification of 
the family and related genera (Wendt et al. 2018). Impor-
tantly it has resulted in extensive surveys worldwide by 
resident mycologists, organization of specialist work-
shops and the training of numerous students. We now 
have a much greater understanding and appreciation of 
the Xylariaceae and relatives, Jack Rogers, we salute you.
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