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Abstract

Background: Metallothionein (MT) is a group of proteins with low molecular masses and high cysteine contents,
and it is classified into different types, which generally contains two domains with typical amino acid sequences.

Results: In this report, two full-length cDNAs (MT-1 and MT-Il) encoding MT-like proteins were isolated from the
roots of sweet potato ([pomoea batatas [L.] Lam. Tainong 57'). Their open reading frames contained 642 and 519
nucleotides (66 and 81 amino acids) for MT-1 and MT-II, respectively, and exhibited a relatively low amino acid
sequence similarity. On the basis of the amino acid sequence similarity and conserved residues, it is suggested that
MT-I'is @ member of the plant MT Type-I family, and MT-Il is a member of the plant MT Type-Il family. The
corresponding mMRNA levels of MT-1 and MT-II were the highest found in the storage roots. Recombinant MT-1 and
MT-II protein overproduced in E. coli (M15) was purified by Ni**-chelated affinity chromatography. MT-1 and MT-Il
reduced dehydroascorbate (DHA) in the presence of glutathione (GSH) to regenerate L-ascorbic acid (AsA).
However, without GSH, MT-1 and MT-Il has very low DHA reductase activity. And AsA was oxidized by AsA oxidase

Monodehydroascorbate reductase activity

to generate monodehydroascorbate (MDA) free radical. MDA was also reduced by MT-1 and MT-Il to AsA in the
presence of NADH mimicking the MDA reductase catalyzed reaction.

Conclusions: These data suggest that MT-1 and MT-Il have both DHA reductase and MDA reductase activities.
MT-1 and MT-II are apparently the first reported plant MTs exhibiting both DHA and MDA activities in vitro.
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Background

A variety of plant cell rescue systems adapt to natural
environmental conditions by neutralizing toxic reactive
oxygen species (ROS). Ascorbate (AsA) plays an impor-
tant role in various aspects of plants life cycle. AsA reg-
ulates growth development such as cell division, cell
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expansion, and serves as a signal transduction molecule
(Pignocchi and Foyer, 2003). In addition, AsA regener-
ation system plays an important role in cellular re-
sponses and in the defense system against ROS. When
AsA functions as an antioxidant in cells, AsA is oxidized
into a monodehydroascorbate (MDA) radical in response
to the production of excess ROS, after which it is re-
duced to AsA by MDA reductase (MDAR) (Gill and
Tuteja, 2010). MDA was a sensitive endogenous index of
oxidative stress. MDA can in turn non-enzymatically
generate AsA and dehydroascorbate (DHA). DHA must
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be converted to AsA by DHA reductase (DHAR) in the
presence of glutathione (GSH) as a reducing agent
(Huang et al., 2008a). Thus, DHAR is a key factor in
maintaining a reduced AsA level in the adaptation to en-
vironmental conditions.

Metallothioneins (MTs) are proteins of low molecular
weights and high cysteine contents with the ability to
coordinate heavy metal atoms. Although widely dis-
tributed among the animal and plant kingdoms, MTs
show extremely heterogeneous compositions (Freisinger,
2011). Plant MTs generally contain two smaller cysteine-
rich domains (4-8 cysteines each) and a large spacer re-
gion (30-50 residues) devoid of this amino acid. The
distribution of cysteine residues, as well as the length of
the spacer region served to further classify plant MTs
into four types (Hassinen, et al, 2011). In plants, most
current knowledge on the putative functions of MTs
deals with the evaluation of their expression levels, and
many physiological roles have been proposed such as
metal homeostasis, heavy metal detoxification, oxida-
tive stress response, protection against salinity, carbon-
ate stress, and developmental regulation (Cobbett and
Goldsbrough, 2002). This paper describes cloning, cha-
racterization, and biological activities of MT-like pro-
teins (MT-I and MT-II) from sweet potato storage
roots. In this study, we also present the evidence to
show that the recombination protein, MT-I and MT-II ex-
hibit both DHA reductase and MDA reductase activities.

Methods

Materials

Fresh storage roots of sweet potato (Ilpomoea batatas [L.]
Lam. ‘Tainong 57’) were purchased from a local market.
After cleaning with water, the roots were placed in a
thermostated (28°C) growth chamber and sprayed with
water twice a day. Sprouted plants were cultivated in the
greenhouse to collect roots, stems, full expanded green
leaves, and flowers for experiments. Dehydroascorbate,
dehydroascorbate reductase, monodehydroascorbate re-
ductase, ascorbate oxidase, anti-actin (plant) antibody, and
other chemicals were purchased from Sigma-Aldrich
Chemical Co. (St. Louis, MO, USA).

PCR-based subtractive hybridization and RACE PCR

Total RNA were isolated separately from the storage roots
and sprouts of sweet potato according to the method of
Sambrook et al. (1989). Then, mRNA was purified with a
purification kit (Promega) and used for the differentially-
expressed first strand cDNA synthesis using a PCR-based
subtractive hybridization kit (Clontech) following the
protocol supplied by the manufacturer. The double-strand
cDNAs of the storage roots were subtracted by the
sprouts, and then ligated to the pGEM-T easy vector for
E. coli DH5a competent cell transformation. Recombinant
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plasmids were isolated for DNA sequencing using the ABI
PRIZM 337 DNA Sequencer. Nucleotide sequence data
were analyzed using the Genetics Computer Group
(GCQ) programs. Full-length ¢cDNA clone was obtained
by performing 5" and 3" RACE (5" and 3’ rapid amplifica-
tion of cDNA ends) using the Marathon cDNA amplifica-
tion kit (Clontech) according to the manufacturer’s
instructions. The gene-specific primers (MT-1, 5'- TAG
GGC CAA AAT AGT GCA AAT T -3'; MT-11, 5'- GAG
ATG CGA AAC TCA GTT GCA A -3') were used to
amplify the double strand cDNAs.

Expression of MT-I and MT-II proteins in E. coli

MT-I and MT-II with its pro-sequence were expressed in
E. coli. The coding sequence was amplified from cDNA
MT-I and MT-II using an oligonucleotide (MT-I, 5'-GGA
TCC AGA GAT GTC TTC CGG TTG C -3"; MT-IL, 5'-
GGA TCC AAA AAT GTC TTG CTG TG-3'), with a
Bam HI site (underlined) at the putative initial Met resi-
due, and an oligonucleotide (MT-I, 5'- GAC CCT TGC
AAC TGT AAG CTT CAA -3; MT-1I, 5'- GCA ATT
GCA AGT GAG ATG CGAA G CTT -3’), with a Hind
I site at the 3" end. The PCR fragment was subcloned in
pGEM T-easy vector. The plasmid was then digested with
Bam HI and Hind III and the excised fragments were
subcloned in pQE31 expression vector (QIAexpress ex-
pression system, Qiagen). The resulting plasmid, termed
pQE-MT-1 and pQE-MT-II respectively, was introduced
into E. coli (M15). Cultures of the transformed E. coli
(M15) overexpressed a protein of the expected molecular
mass, which was purified by affinity chromatography in
Ni-nitrilotriacetic acid (NTA) columns (Qiagen), accor-
ding to the manufacturer’s instructions.

RNA isolation and northern blot analysis

Total RNA were extracted from different tissues of sweet
potato with TRIzol reagents kit (Invitrogen) according to
the manufacturer’s instructions. For northern blotting,
10 pg of total RNA isolated from storage roots, sprouts,
sprouted roots, veins, fully expanded green leaves, and
flowers were applied to a formaldehyde denaturing gel,
then transferred to an Amersham Hybond-N"nylon mem-
brane after electrophoresis, according to Sambrook et al.
(1989). The filter was hybridized sequentially with a-**P-
labelled defensin full-length ¢cDNA. The procedures for
hybridization and autoradiography were according to the
Sambrook et al. (1989). Visualization of hybridization
bands was carried out using X-ray film (Kodak).

Production of polyclonal antibody and western

blot hybridization

Expressed MT-like Y459 (accession no. AF177760) ma-
ture protein was cut from the 15% polyacrylamide gel,
eluted, and mixed with appropriate amount of pH 7.5
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phosphate buffer saline (PBS) containing 0.1% SDS
(Chen, et al., 2003). The eluted proteins were precipi-
tated with acetone containing 10% trichloroacetic acid
(TCA) at —20°C for 2 hr. After centrifugation at
13,000 g for 20 min, the pellet was washed with acet-
one twice, then, dried at room temperature. The acet-
one powder was re-dissolved in a small amount of PBS
containing 0.1% SDS and used as antigens for subcuta-
neous injections of rabbit to prepare the first anti-
bodies (Taiwan Bio-Pharm Inc.). The second antibody
(goat against rabbit Fc portion of Ig) was a product of
Sigma-Aldrich (USA). Polyclonal antibodies obtained
from rabbit antiserum were utilized for western blot
hybridization to study the gene expression of MT-I and
MT-II, respectively.

Electroblotting analysis of MT-I and MT-II proteins

All steps were carried out at 4-8°C. The protein concen-
tration of the supernatant was determined by the Bradford
dye-binding assay (Bio-Rad, Hercules, CA). The expres-
sion proteins were saved for electroblotting. The crude ex-
tract was subjected to 15% SDS-PAGE according to
Laemmli (1970). After electrophoresis, gels were equili-
brated in transfer buffer (25 mM Tris-HCl, pH 8.3,
150 mM glycine and 10% (w/v) methanol). The separated
proteins were transferred to an Immobilon PVDF mem-
brane (Millipore, Bedford, MA) in transfer buffer at
pH 8.3 for 1 hr at 100 V. Membranes were blocked for
2 hr at room temperature in 5% nonfat dry milk powder
and then incubated with polyclonal antibody as the pri-
mary antibody against MT-1 and MT-II proteins. The pri-
mary antibody was obtained from rabbit antiserum. After
incubation, membranes were washed in phosphate-buffer
saline with 0.05% Tween (PBST) three times, 10 min each,
then incubated with anti-mouse alkaline phosphatase-
conjugated antibody, washed in PBST three times, 10 min
each, and developed using NBT (nitro blue tetrazolium)/
BCIP (5-bromo-4-chloro- 3-indolyl -phosphate) (Sigma,
USA). The secondary antibody (goat against mouse Fc por-
tion of Ig) was a product of Sigma (USA).

DHA reductase activity assay

The DHA reductase activity of MT-I and MT-II were
assayed according to the method of Trimper et al
(1994). Ten milligrams DHA were dissolved in 5.0 ml of
100 mM phosphate buffer with pH 6.0 or pH 7.0. The
reaction was carried out at 30°C by adding 100 pg MT-I
and MT-II solution (100 pg protein) to 0.9 ml DHA
solution with or without 4 mM GSH. The increase of
absorbance at 265 nm was recorded for 5 min. Non-
enzymatic reduction of DHA in phosphate buffer was
measured in a separate cuvette at the same time. MT-I
or MT-II solution was replaced with empty pQE31-
vector proteins for negative controls.
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MDA reductase activity assay

The MDA reductase activity of MT-I and MT-II were
assayed according to Hossain et al. (1984) by following
the decrease in absorbance at 340 nm due to NADH
oxidation. MDA free radicals were generated by AsA
oxidase (EC 1.10.3.3) in the assay system. The reaction
mixtures contained 50 mM phosphate buffer (pH 6.0
or 7.0), 0.33 mM NADH, 3 mM AsA, AsA oxidase (0.9
U), and 200 pL MT-I and MT-II solution (200 pg pro-
tein) in a final volume of 1 mL. MT-I or MT-II solu-
tion was replaced with empty pQE31-vector proteins
for negative controls.

MDA reductase activity staining in 15% SDS-PAGE gels
MT-I and MT-II were examined for MDA reductase by
activity staining in 15% SDS—PAGE gels. Diaphorase ac-
tivity staining for MDA reductase activity of MT-I or
MT-II was according to the methods of Kaplan and
Beutler (1967) in a 15% SDS-PAGE gel. After electro-
phoresis, the gel was washed with 25% isopropanol in
10 mM Tris buffer (pH 7.9) twice to remove SDS before
activity staining.

Statistical analysis

Means of triplicate were calculated. Student’s ¢ test was
used for comparison between two treatments. A difference
was considered to be statistically significant when p < 0.05.

Results and discussion

Isolation and nucleotide sequence of MT-I and MT-II
cDNA clones from sweet potato storage roots

MT-I and MT-II ¢cDNA clones from sweet potato stor-
age roots were isolated. We have completed the se-
quencing of the clones, which were named MT-I and
MT-II (MT-1, GenBank Accession Number AF116845
and MT-II, GenBank Accession Number FJ418632).
The open reading frames in these two ¢cDNAs encode
pro-proteins of 66 and 81 amino acids, respectively,
with a predicted molecular mass of 6,614 Da (pl 4.64)
and 8,068 Da (pI 4.81). A comparison of the deduced
amino acid sequence of MT-I and MT-II indicates 25%
identity.

In plants, the members of MT family have been divided
into four types according to the location and distribution
of Cys residues. MT types 1-3 contain two Cys-rich clus-
ters respectively at their N- and C-terminal regions, sepa-
rated by a central Cys-free spacer of 30—40 residues. The
type 4 which is known as Ec-type, has three Cys-rich clus-
ters each separated by 10-15 residues (Nezhad, et al,
2013). In this manuscript, amino acid sequences of MT-I
and MT-II were compared at their N-terminal (domain 1)
and C-terminal (domain 2) regions. The result showed
that the deduced amino acid sequence of MT-I have a
high degree of similarity with type 1 MT-like proteins
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from other plants, including a central hydrophobic do-
main flanked by conserved cysteine-rich motifs (conserved
domain 1 region: CxCxxxCxCxxCxC and conserved do-
main 2 region: CxCxxxCxCxxCxC). In addition, deduced
amino acid sequence of MT-II also exhibits a high degree
of similarity with type 2 plant MT-like sequences, with the
typical cysteine-rich domains at the N-terminal (CCxxxCx
CxoxoxxCxCxxxCxxC) and C-terminal region (CxCxxxCx
CxxCxC), respectively (Branislav, et al, 2013). The data of
gene structure analysis also agreed with the data from the
comparison of amino acid sequences (Figure 1).

Copy numbers of MT-I and MT-Il sequences in sweet
potato

We performed Southern blot hybridization with Eco RI
(E), Bam HI (B) and Hind III (H) digests of sweet potato
Tainong 57 DNA, using probe derived from 3’-noncoding
sequence of the cDNAs to estimate the copy number of
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the gene. Tainong 57, an elite sweet potato cultivar derived
from a cross between Tainong 27 and Nancy Hall, has a
hexaploid number of chromosome (2n=6x=90). The
results suggest that MT-I and MT-II belong to a small
multigene family in sweet potato (Figure 2A).

MT-I and MT-Il mRNA levels were developmentally
regulated

The presence and amounts of different sweet potato
MT-I and MT-II mRNAs were examined in various or-
gans and tissues by northern blot analysis. M7-/ and
MT-II were obtained from sweet potato storage roots.
Figure 2B shows that MT-I and MT-II probe hybridized
to mRNA species of approximately 1.0 kb. MT-] mRNA
levels were the highest in the storage roots, followed by
that in sprouted roots, fully expanded green leaves and
vein; while it was the lowest in sprout. MT-II mRNA
levels were the highest in the storage roots, followed by

A MT-1

B MT-2

1 ggggaagcaacaatatagtttgggagagatatatacatattttagtttgttgtgtttgtag
62 ggatcggagtaagagatgtcttecggttgcaagtgtggetecgactgcaagtgcggcagt
MSSGCKCGSDC CKTCGS
122 gactgcgcgtgtgaagaggtgaccaccaccgttaccatcatcgagggggttgcaccagtyg
DCACEEVTTTVTTITIEGVAPYVY
182 aagttgaccttagaggggtcttctgagaaggctacagagggaggacatgcctgcaagtgt
KLTLEGS S SEZ KATEG GGHATCIKSTC
2472 ggatcaaactgcacctgtgacccttgcaactgttagggccaaaatagtgcaaattaaata
GSNCTCDZPCNC *
302 atcaccccttcaagetatgtatggatggageatgtcettattagggtttgtctaataaata
362 tatatacatatatgtgtatgtactgatgataattaatggatggggcttttgcagtgatga
422 tgatgagtgtaataataagcagattgcagatgatgagttatgcagatctttgttgaagty
482 tcccttagatttgtgtgattcatttatgtttogaatgtgtggttgcttggatatttggac
542 tttatccttaatgtatgttgaaaaaggttgactgtactgtattgaactaaatggtateat
602 attaatgttgtgaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 642

1 gtctttctettcttctgtatgaaaaaatgtcttgctgtggaggaaactgtggctgcgac
MSCCGGNCGTCG
60 tctggctgcaaatgcggcaacggttgtggcggetataagatgtaccecagacctgagttat
SGCKCGNGCGGCKMYPDLTSY
120 tcggaggccgctgctaccactgagacecttgttcttggtattegctectatgaaaaccaag
S EAAATTETTLVLGYVAPMMEIKTK
180 tttgagggatctatgataggggaggttgcagcaactgagagtgggtgcccgtgtggagat
FEGSMTIGEVAATET SG GTCPTCGD
240 aactgcaaatgtgacccttgcaattgcaagtgagatgcgaaactcagttgcaagaaaaca
NCKOCDPCNTCEK
300 gagacgaatctatgtttaatttatgttgaaaaataatcttaattgtttttaaggecttgt
360 tgtgtatgtaggtagtttgtgcggtgaaaaattaagtggtttggtttctaccatetattt
420 tgtgataagacaagtttatgtatgtagtggtttttaatattatggtatatcgtctetgtt
480 ttataacttaatgagaaatttgtttgttatcaaaaaaaaa 519
Figure 1 DNA and amino acid sequences of two putative MTI and MT-II protein genes (MT-1, GenBank Accession Number AF116845
and MT-Il, GenBank Accession Number FJ418632) isolated from sweet potato tuberous roots. ATG (underlined) represents the start codon.
TGA and TAA (underlined) are the stop codons for MT-1 and MT-II, respectively.
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Figure 2 Northern and Southern blot detections of MT-1 and
MT-II genes. A. Samples (10 ug) of genomic DNA from sweet
potato Tainong 57 leaves were digested with Eco Rl (E), Bam HI (B),
and Hind Il (H). The DNA fragments were separated in 0.8% agarose
gels, transferred to a Hybond- N-nylon membrane, and hybridized
with PCR-labeled cDNA probes. Molecular size markers were A DNA/
Hind Il fragments. B. Northern blot analysis. Samples (10 ug each) of
total RNA were isolated from different tissues of sweet potato and
actin (AY905538) was utilized as an internal control of mRNA from
sweet potato. Blots were hybridized to a-**P-labeled 3' specific
cDNA probes. Lane 1: storage roots, lane 2: sprout, lane 3: veins,
lane 4: sprouted roots, and lane 5: full expanded green leaves.
Actin was used as a control. The experiments were done twice and
a representative one was shown.
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that in fully expanded green leaves; while it was the low-
est in sprouted roots and vein.

Expression of MT-I and MT-Il in E. coli

SDS-PAGE analysis of MT-I and MT-II crude extracts
from the transformed E. coli (M15) showed high amounts
of a polypeptide with the expected molecular mass (ca. 6.5
and 8 kDa) (Figure 3A and 3B). Each polypeptide was
found as a soluble protein in the supernatant (Figure 3A
and 3B, lane 2), and was absent in protein extracts
obtained from E. coli transformed with pQE-31 vector
(Figure 3A and 3B, lane 1). The expressed protein was
highly purified from crude extracts as His-tagged pQE-
MT-1 and pQE-MT-II (Figure 3A and 3B, lane 3), respect-
ively. The polypeptides of MT-I and MT-II were analyzed by
western blot assay. As shown in Figure 3C and 3D, MT-I and
MT-1I proteins expressed in the transformed E. coli (M15).

Effect of pH (6.0 and 7.0) on dehydroascorbate reductase
activity of MT-1 and MT-II proteins

The purified MT-I and MT-II were used to examine DHA
reductase activity. Figure 4 shows AsA regeneration (AA

A MT-1SDS-PAGE B MT-II SDS-PAGE

kba M 1 2 3 kpba M 1 2 3
250 — = — 250 — == —
~fatattE -
- 64 —
0w B .
%—w BB )
30 e 36 — e
i - 30 —
16 —wa
[ - 16 —% =
6 — - % 6 — - P.
C  MT-I Western blot D  MT-II Western blot
1 2 3 1 2 3
e -

Figure 3 Purified recombinant sweet potato MT-I and MT-II
proteins. A. MT-| proteins and B. MT-II proteins 15% SDS-PAGE
analysis. Crude extracts (5 pg protein) from E. coli (M15) transformed
with pQE30 (lane 1) or with pQE31- MT-I (lane 2) or pQE31- MT-Il
were analyzed by 15% (w/v) SDS-PAGE, and then the gels were
stained with Coomassie brilliant blue G-250. Molecular masses of
standard proteins were indicated at the left of the figure. His-tagged
MT-l protein or MT-Il was purified by Ni**-chelated affinity
chromatography (lane 3). C. MT-l proteins and D. MT-II proteins
analyzed by Western blot. The gels were transferred onto PVDF
membranes that were probed with a 1:1000 (v/v) dilution of mouse
antibodies raised against MT using goat-anti-mouse alkaline
phosphatase as the secondary antibody. The experiments were done
twice and a representative one is shown. “M" indicated the see Blue™
pre-stained markers for SDS-PAGE. Each data show the mean + SD of
one experiment performed in triplicate.
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Figure 4 Effect of pH (6.0 and 7.0) on dehydroascorbate reductase activity. Purified recombinant protein of MT-l and MT-Il were with (A) or
without (B) 4 mM glutathione in the reaction mixtures. The reaction was carried out at 30°C by adding 100 uL MT-I and MT-Il solution (100 pg
protein, 100 mM phosphate buffer, pH 7.0 and 6.0) to 0.9 mL DHA solution with or without 4 mM glutathione. The increase of absorbance at
265 nm was recorded for 5 min. The experiments were done twice and a representative one is shown.

265 nm) from DHA at both pH 6.0 and 7.0 with (A) or
without (B) GSH. Figure 4A shows that MT-I and MT-
II exhibited DHA reductase activity and could reduce
DHA back to AsA. The specific activities of DHA re-
ductase for MT-I and MT-II in the presence of GSH
were 3.45 and 5.52 nM AsA produced/min/mg protein
at pH 7.0, respectively. However, in the absence of GSH,
very low DHA reductase activities of MT-I and MT-II
were found (Figure 4B): only 0.01 and 0.02 nM AsA
produced/min/mg protein at pH 7.0, respectively. In
addition, the specific activities of DHA reductase for
MT-I and MT-II in the presence of GSH were 1.86 and
1.28 nM AsA produced/min/mg protein at pH 6.0, re-
spectively. However, in the absence of GSH, very low
DHA reductase activities of MT-I and MT-II were

found (Figure 4B): only 0.006 and 0.018 nM AsA pro-
duced/min/mg protein at pH 6.0, respectively. MT-I
and MT-II act as a GSH-dependent DHA reductase
(Figure 5), and the rate of reduction was closely propor-
tional to the concentration of GSH.

DHA is generated from the disproportionation of the
MDA radical produced following the oxidation of ASA.
DHA reductase catalyses the reduction of DHA to ASA
using GSH as the reductant (Wu, et al., 2009). If DHA is
not recycled to ASA, it undergoes irreversible hydrolysis
to 2, 3-diketogulonic acid. Expression of DHA reductase
in plant, responsible for regenerating AsA from an oxi-
dized state, regulates the cellular AsA redox state, which
in turn affects cell responsiveness and tolerance to envir-
onmental reactive oxygen species (ROS). Because of its
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Figure 5 Dependence of dehydroascorbate reductase activity of MT-I and MT-Il on GSH concentration. The reaction was carried out at
30°C by adding 100 pL MT-I and MT-II solution (100 ug protein, 100 mM phosphate buffer, pH 7.0) to 0.9 mL DHA solution with different
concentrations of glutathione. The increase of absorbance at 265 nm was recorded for 5 min. Each data show the mean + SD of one experiment
performed in triplicate.

role in AsA recycling, we examined whether DHA re-
ductase is important for plant growth (Wang, et al., 2010).
In its reaction with ROS, ASA is oxidized to the short-lived
radical, MDA, which can rapidly disproportionate non-
enzymatically to produce DHA and ASA. Alternatively,
MDA can reduce DHA to ASA using NADPH as the re-
ductant. Therefore, plants have evolved several mechanisms

0.12
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o MT-I pH 7.0
010{| ———%-—— MT-IpH6.0 v
— A — - MT-IpH7.0
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o
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S
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o0
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qooooood ol
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Figure 6 Effect of pH (6.0 and 7.0) on monodehydroascorbate
reductase activity of MT-1 and MT-II. The reaction mixtures
contained 50 mM phosphate buffer (pH 6.0 and 7.0), 0.33 mM
NADH, 3 mM AsA, AsA oxidase (0.9 U), and 200 pL MT-l and MT-II
solution (200 ug protein) in a final volume of 1 mL. MT-I and MT-Il
solution was replaced with distilled water for controls. The
experiments were done twice and a representative one is shown.

by which the oxidized forms of ASA can be recycled
(Kercheyv, et al., 2012).

The most critical advance in MTs research is the demon-
stration of the redox regulation of Zn-S interaction and the
coupling of zinc and redox metabolism (Oteiza, 2012). The
cluster structure of Zn-MT provides a chemical basis by
which the cysteine ligand can induce oxidoreductive
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Figure 7 Protein and diaphorase activity stainings in 15%
SDS-PAGE gels for detection of monodehydroascorbate reductase
activity of MT-I (A) and MT-II (B). The experiments were done twice
and a representative one is shown. ‘M’ represents the molecular weight
marker and 10 pg proteins were loaded in each well.
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properties. The hypothesis that MT functions as an antioxi-
dant against ROS and reactive nitrogen species has received
extensive experimental support from many of the in vitro
studies. Studies using a cell-free system have demonstrated
the ability of MT as a free radical scavenger. MT has been
shown to scavenge hydroxyl radical in vitro, because of its
cysteinyl thiolate groups (Miura, et al., 1997). In ad dition,
there are possible reasons to explain the apparent low
DHAR activity of MT-I and MT-IL Zinc (II) is an import-
ant regulator of GSH synthesis. The importance of zinc in
the metabolism of GSH underscores the finding that, as
zinc deficiency is accompanied by oxidant increase, many
studies reveal a deficiency of GSH under such conditions
(Hernandez, et al., 2012). Therefore, MT-I and MT-II may
be less reduced by GSH resulting in low DHAR activity
comparing to other DHAR.

Effect of pH (6.0 and 7.0) on monodehydroascorbate
reductase activity of MT-I and MT-Il proteins.

MDA was reduced to AsA in coupling with NADH oxi-
dation (A A340 nm) at pH 6.0, and 7.0 when MT-I and
MT-II proteins was used as MDA reductase. The MT-I
and MT-II proteins exhibited MDA reductase activity at
both pH 6.0 and 7.0 (Figure 6), with higher activity at
pH 6.0 than pH 7.0. Therefore, the specific MDAR activ-
ity of MT-I and MT-II proteins was 0.18 and 0.17 unit/
mg protein in pH 6.0, respectively.

Protein and diaphorase activity stainings in 15% SDS-PAGE
gels for detection of monodehydroascorbate reductase
activity of MT-l and MT-II proteins.

MDA reductase activity staining of MT-I and MT-II
was done for diaphorase activity (Kaplan and Beutler,
1967) on SDS-PAGE gels (Figure 7). Comparing Figure 7
(A, lane 1 and B, lane 1) (protein staining) with Figure 7
(A, lane 2 and B, lane 2) of MT-I and MT-II one can see
that the diaphorase activity staining for MDA reductase
activity came from 6 or 8 kD MT-I or MT-II. MDA reduc-
tase and DHA reductase were shown to contain free thiol
groups in their catalytic sites (Trimper, et al, 1994).
When AsA is the sole hydrogen donor, the AsA peroxid-
ase, guaiacol peroxidase, and AsA oxidase can produce
MDA (Hou, et al, 1999). Nonenzymatic oxidations of
AsA also produce MDA when cells were under oxidative
stress (Hossain, et al., 1984). DHA reductase that catalyses
the reduction of DHA by GSH have been purified from
rice, spinach, and potato (Dipierro and Borranccino, 1991).
Several other proteins such as glutaredoxins (thiol
transferases), protein disulphide isomerases, defensin,
thioredoxin, and even a Kunitz-type trypsin inhibitor
have been shown to have DHAR activity (Huang et al.,
2008a; Huang et al., 2008b). Plant Kunitz-type trypsin
inhibitor has slight DHAR activity in its reduced form
(Trimper et al. 1994). Thioltransferase (glutaredoxin)
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and protein disulfide isomerase from animal cells also
have DHAR activity (Wells et al. 1990). Nevertheless, the
amino acid sequence of the MT is quite distinct from these
other DHAR enzymes.

Conclusions

DHA reductase and MDA reductase activities of plant
MT have been the subject of intensive study. However,
little information is known about whether MTs also have
DHA or MDA activity in vitro. Thus, that MT-I and
MT-II cloned from storage roots of sweet potato appear
to possess both DHA reductase and MDA reductase ac-
tivities is an important finding. It becomes that MT-I
and MT-II are suitable candidates to transform plants to
improve resistance against various oxidative stresses. It
also seems beneficial for people who consume sweet po-
tato roots.
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