
Su et al. Botanical Studies 2014, 55:21
http://www.as-botanicalstudies.com/content/55/1/21
RESEARCH Open Access
CsPI from the perianthless early-diverging
Chloranthus spicatus show function on petal
development in Arabidopsis thaliana
Kunmei Su1*, Zhenhuan Li1 and Zhiduan Chen2*
Abstract

Background: In the floral ABC model, B-class genes comprised of DEFICIENS (DEF)/APETALA3 (AP3) and GLOBOSA
(GLO)/PISTILLATA (PI) had been proposed to involve in second and third whorl floral organ development. However,
less is known about the function of B-class genes from early-diverging angiosperms. Chloranthaceae is one of the
early-diverging angiosperm families. In this study, we characterized the role of the PI-like gene CsPI cloned from
Chloranthus spicatus which have the simplest perianthless bisexual flowers.

Results: The expression profile analysis reveals high levels of CsPI mRNA in stamens in Chloranthus spicatus, with
weak distribution in leaves and other floral organs. Nevertheless, CsPI rescued both stamen and petal development
in Arabidopsis thaliana pi-1 mutants and caused partially conversion of sepals into petaloid organs in wild-type
Arabidopsis thaliana plants. Yeast two-hybrid analysis showed that CsPI can form not only homodimers but also
heterodimers with proteins encoded by Arabidopsis thaliana and Chloranthus spicatus AP3-like genes.

Conclusions: These results suggested that CsPI has an ancestral function on stamen development and that CsPI
has capability to specify petal development in Arabidopsis thaliana. The finding indicates that the activity of the
encoded PI-like proteins is highly conserved between the early-diverging Chloranthus and Arabidopsis. Moreover, our
results appear to suggest that B-function genes may not play a role in perianth development in Chloranthus spicatus.
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Background
In plants, MADS-box genes are of particular interest
because of the large size of the family and the critical
developmental roles the members are known to play
(Theissen et al. 2000). In the model plant Arabidopsis
thaliana, five classes of MADS-box genes were involved
in determing the development of floral organ identity.
Functions of these genes have been summarized in the
ABCDE model, which holds that different A, B, C, D
and E class MADS-domain proteins interact to form
functional “ternary” or “quartet” protein complexes that
are responsible for establishing the various floral organ
identities (Egea-Cortines et al. 1999; Honma and Goto
2001; Smaczniaka et al. 2012; Theissen and Saedler
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2001). In this model, the A class genes APETALA1 (AP1)
and APETALA2 (AP2) control sepal formation; A, B
[APETALA3 (AP3), PISTILLATA (PI)] and E (SEPAL-
LATA1/2/3) class genes together regulate petal forma-
tion; B, C [AGAMOUS (AG)] and E class genes control
stamen formation; C and E class genes regulate carpel
formation; and the D class genes SEEDSTICK (STK) are
involved in ovule development (Theissen 2001; Theissen
and Saedler 2001).
Numbers of MADS-box genes have already been iden-

tified in almost every group of flowering plants, in-
cluding early-diverging angiosperms. These MADS-box
genes involved in flower development provided conveni-
ence for further studies on the evolution of flowers. Up to
now, a huge variety of inflorescence and floral morph-
ologies are found among flowering plants. Phylogenetic
studies based on morphology and genes have demon-
strated that the origin and early diversification of flowers
during evolution may have significantly contributed to
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the sudden occurrence of diverse angiosperms in a rela-
tively short time span during the Early Cretaceous.
Therefore, the MADS-box gene family controlling flower
development in early-diverging plants gains more and
more attention.
Among the early-diverging angiosperms, the ANITA

groups (ANITA is the acronym of Amborella, Nym-
phaeaceae, Illiciales, Trimeniaceae and Austrobaileyaceae),
which have undifferentiated perianth, are suggested the
earliest extant angiosperms by phylogeny analysis (Hansen
et al. 2007; Soltis et al. 2007a; Qiu et al. 1999; Zanis et al.
2002). Following this earliest diverging grade, Chlor-
anthaceae is sister to the magnoliids and together this
group is sister to a large clade that includes eudicots
and monocots (Hansen et al. 2007; Moore et al. 2007).
In fact, the family Chloranthaceae has been placed in
many different positions in phylogenetic trees based on
morphology and gene sequences, for example Piperales,
Laurales, Magnoliales, Austrobaileyales (reviewed by
Hansen et al. 2007). The family Chloranthaceae contains
four extant genera (Chloranthus, Sarcandra, Ascarina, and
Hedyosmum) and approximately 70 species. Each of the
four extant genera has distinctive morphological: Chlor-
anthus and Sarcandra possess the simplest bisexual flowers
in angiosperms; Ascrina and Hedyosmum, however, bear
the simplest unisexual flowers in angiosperms. Thus Chlor-
anthaceae represents an interesting model with which to
explore the evolution of flowers.
In the floral ABC model, B-class genes comprised of

DEFICIENS (DEF)/APETALA3 (AP3) and GLOBOSA
(GLO)/PISTILLATA (PI) had been proposed to involve
in second and third whorl organ development. In eudi-
cots, functions of AP3-like and PI-like genes are basically
conserved in petal and stamen development (for review
Soltis et al. 2007b; Becker and Theissen 2003). In the
core eudicot A. thaliana, single mutant of AP3 and PI
caused the homeotic transformation of petals to sepals
in the second whorl and of stamens to carpels in the
third whorl (Jack et al. 1992; Goto and Meyerowitz
1994). In basal eudicots Aquilegia vulgaris and Papaver
somniferum (Ranunculales), B-class genes are also found
to be necessary for the development of both petals and
stamens (Drea et al. 2007; Kramer et al. 2007). In the
basal eudicot California poppy (Eschscholzia californica),
mutant of the PI-lineage gene SEI shows homeotic
changes characteristic of floral homeotic B class mutants
(Lange et al. 2013). In monocots, heterologous expres-
sion studies suggested that B-class genes play the same
role as in eudicots, although data from heterologous ex-
pression studies are difficult to interpret (Bartlett and
Specht 2010). silky1 (si1), a mutant of Zea mays AP3-like
gene, shows homeotic conversions of stamens into carpels
and lodicules into palea/lemma-like structures (Ambrose
et al. 2000). Consistent with this, Silky1 and Zmm16
(PI-like gene of Zea mays), are also able to rescue petal de-
velopment in A. thaliana ap3 and pi mutant, respectively
(Whipple et al. 2004). The PI homologs from Agapanthus
praecox and Elaeis guineensis, monocot flowers with petal-
oid inner perianth organs, also have been shown to rescue
the pi-1 mutant of A. thaliana (Nakamura et al. 2005;
Adam et al. 2007). These data appear to suggest that the
function of B-class genes is conserved in monocots and
eudicots. However, less is known about the function of
B-class genes in early-diverging angiosperms. Therefore,
we preferentially selected the B class genes from the early-
diverging angiosperm Chlornthus spicatus for functional
analysis.
In Chlornthus spicatus, the AP3-like gene CsAP3 have

been investigated through in situ hybridization expres-
sion analyses and transformation experiments. CsAP3 is
exclusively expressed in male floral organs, but is not
detected in the dome-shaped spike primordia, bract
primordial and leaves (Li et al. 2005). Only weak comple-
mentation was seen in the third floral whorl (stamen),
nevertheless, no complementation was seen in the second
floral whorl (petal) when CsAP3 was expressed in A. thali-
ana ap3-3 mutant plants (Su et al. 2008). No ectopic gain-
of-function in the fourth floral whorl was observed when
CsAP3 was ectopically expressed in wild-type A. thaliana
plants. However, less research work on the function of the
PI-like gene from C. spicatus was reported although
complete coding sequence of CsPI has already been iso-
lated previously (Su et al. 2008). Therefore, functional ana-
lysis of CsPI is necessary.
To investigate the role of the PI-like gene CsPI in

floral development, the expression pattern was analyzed
using quantitative real-time PCR analysis. To comple-
ment the results of the expression pattern analyses, we
transformed 35S::CsPI into wild-type A. thaliana plants
and 5D3::CsPI into the pi-1 mutant plants. To explore how
they worked, we tested interactions of proteins by employ-
ing the yeast two-hybrid system.

Methods
Plant material and RNA extraction
C. spicatus used in our experiments were cultivated
in the Botanical Garden, Institute of Botany, Chinese
Academy of Sciences, Beijing. Total RNA was prepared
using Trizol (Invitrogen). Then poly(A) mRNA were
purified using Oligotex mRNA Mini Kit (Qiagen) and the
first-strand cDNA was synthesized with Superscript III
(Invitrogen) (Su et al. 2008).

Vectors construction
Full-length CsPI cDNA sequence fragment was cloned into
the binary vector pCAMBIA 1301 (Cpgbiotech). Primers
YCsPI and PTA were used in PCR amplification. The cauli-
flower mosaic virus (CaMV) 35S promoter (Benfey and



Table 1 Primers used in this paper

Name of primers Sequence of primers

CsPIReTi-F2 5′-GCGTTTAAGCTACATCTTGCATC-3’

CsPIRETI-R2 5′-ATGGTTCTGGTGGAAACGAAG-3’

qActup 5′-CGTATGAGCAAGGAGATCAC-3’

qActdown 5′-CACATCTGTTGGAAGGTGCT-3’

18S primerF 5′-CGGCTACCACATCCAAGGAA-3’

18S primerR 5′-TGTCACTACCTCCCCGTGTCA-3’

AtPINde1 5′-GATCTCATATGGGTAGAGGAAAG-3’

AtPINoM 5′-TGATTGAATTCTGTTGTCCTTCCATG-3’

YCsAP3 5′-CGGGCCATGGGAAGAGGAAAGATT-3’

CsAP3NoM 5′-TCTATCATATGTGCAGCCCTGCTAC-3’

YCsPI 5′-CGGGCCATGGGTCGTGGGAAGATC-3’

CsPINoM 5′-TGTTCGAATTCGTTAGCCCCTCTAC-3’

AtAP3Nde1 5′-GATCTCATATGGCGAGAGGGAAG-3’

AtAP3NoM 5′-TTCATGAATTCATCAGCCCTAACAC-3’

PIINT-2 5′-CCAATTTCATGATATCTAGCTCAG-3’

PI-1 5′-TACCAGAAGTTATCTGGCAAGAAATCATCATG-3’

PTA 5′-CCGGATCCTCTAGAGCGGCCGC(T)17-3’
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Chua 1990) was fused to the cDNA to drive nearly ubi-
quitous expression of all the transgenes in a wild-type
background. Furthermore, to avoid ectopic expression
of these transgenes, in another series of experiments
the A. thaliana AP3 promoter 5D3 was used to drive
expression of the transgenes in whorls 2 and 3 of devel-
oping A. thaliana flowers in the pi-1 mutant back-
ground (Lamb and Irish 2003). The promoter sequence
was amplified by PCR from DNA extracted from leaves
of wild-type A. thaliana using primers in our previous
studies (Su et al. 2008).

A. thaliana transformation and genotyping
The plasmid constructs were transformed into wild-type
Landsberg erecta A. thaliana plants and pi-1 mutant
plants respectively, by the floral dip method (Clough and
Bent 1998).
Seeds of the transgenic A. thaliana plants were se-

lected on solid 0.5 ×MS medium (Murashige and Skoog
1962) containing 50 mg/L rifampicin at 4°C for 2 days,
and then were transferred to the greenhouse under
long-day condition (16 h light/8 h dark) at 22°C for 10
days. As the control, seeds of wild-type A. thaliana were
cultured on solid 0.5 ×MS medium as described above.
Subsequently, the wild-type and transgenic seedlings
were transplanted to soil and were cultured at 22°C with
16 h light and 8 h dark.
Homozygous pi-1 plants were identified using a

dCAPS marker, in which BspHI cuts the wild-type se-
quence (Lamb and Irish 2003), but the site is abolished
by the pi-1 mutation. All observed phenotypes were her-
itable and segregated as dominant traits. Morphological
analysis was performed on the T1 generation.

Primers used in experiments
Primers used in our experiments were all showed in
Table 1.

Quantitative real-time PCR analysis
Total RNA was extracted from roots, stems, leaves,
bracts, stamens and carpels of C. spicatus for expression
pattern analysis of CsPI. For their constitutive and com-
plementary expression analysis, total RNA was extracted
from the inflorescences of A. thaliana carrying trans-
genic constructs. After the purification of RNA samples,
first-strand cDNA was synthesized with Superscript™ III
Reverse Transcriptase (Invitrogen) in a 20μl reaction
volume. Each kind of sample was prepared three times
as described above. Quantitative real-time PCR was
performed with the iQ SYBR Green supermix (Bio-Rad) in
a Rotor-gene 3000 classic real-time PCR machine (Corbett
Research). PCR conditions were 15 min at 95°C, followed
by 40 cycles of 30 s at 94°C, 30 s at 56°C and 30 s at 72°C.
To detect the expression pattern of CsPI in C. spicatus, the
C. spicatus housekeeping gene 18S rRNA was used to
normalize the amount of the cDNAs added to the reaction.
To analysis the expression of CsPI in wild-type and pi-1
mutant A. thaliana, the A. thaliana housekeeping gene
ACTIN was used as normalization control. Specific primer
pairs were designed with the help of Beacon Designer 4
software (Premier Biosoft International). These primers in-
clude CsPIReTi-F2, CsPIRETI-R2. In each experiment, two
standard curves were applied for the relative quantification
of the cDNA copies. Each sample was analyzed three times
to determine reproducibility.

SEM observation
All flowers collected from the transgenic wild-type A. thali-
ana plants were immediately fixed with FAA (formalin:
acetic acid: 50% ethanol = 5: 6: 89). Then these flowers
were dried and coated as described previously (Xu et al.
2005), and observed with a Hitachi S-800 scanning elec-
tron microscope (SEM).

Yeast two-hybrid assays
Yeast two-hybrid assays were performed using the GAL4-
based MATCHMAKER Two-Hybrid System (Clontech).
Saccharomyces cerevisiae strain AH109, GAL4 activa-
tion domain (AD) expression vector pGADT7 and GAL4
DNA-binding domain (DNA-BD) expression vector
pGBKT7 were used. Full-length cDNA of CsAP3, CsPI,
were amplified with NcoI restriction enzymes digest site
overlapping the start codon and BamHI at the 3′ end.
EcoRI and BamHI sites were introduced to generate
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MADS-deleted CsAP3 and CsPI, for cloning into pGADT7
and pGBKT7, respectively. All constructs were verified by
restriction enzymes analyses and sequencing. The yeast
strain AH109 was transformed with above constructs ac-
cording to the manufacture’s protocol of small-scale LiAc
yeast transformation procedure. Confirmation of the trans-
formants and interaction analyses were performed as previ-
ously described (Shan et al. 2006; Su et al. 2008). The
transformants co-transformed plasmids of AP3 and PI in
absence of MADS domain from A. thaliana were used as a
positive control (Yang et al. 2003). The transformants con-
taining plasmids pGADT7 and pGBKT7 were used as a
negative control.

Results
Expression patterns of CsPI in C. spicatus
In order to get a clue about the function of CsPI, mRNA
accumulation was analyzed by quantitative real-time
PCR. As shown in Figure 1, CsPI mRNA was absent
in roots and stems. Only weak expression of CsPI was
found in leaves and bracts (Figure 1). Some expression
was expressed in carpels and the strongest expression
was detected in stamens (Figure 1). The expressing
quantity of CsPI in stamens was 3 times what in carpels.
These data suggested that CsPI was expressed broadly in
C. spicatus. The expression pattern is similar to those of
the PI-like genes from other early-diverging angiosperms
(Kim et al. 2005; Lv et al. 2012).

Ectopic expression of CsPI in wild-type A. thaliana
To further explore the function of CsPI in floral devel-
opment, we transformed wild-type A. thaliana plants
with the cDNA under the control of the cauliflower
mosaic virus (CaMV) 35S promoter.
Figure 1 The detection of the expression of CsPI. Total RNAs
isolated from roots (R), stems (Ste), leaves (Le), bracts (Br), stamens (Stm)
and carpels (Ca) were used as templates to detect the expression of
CsPI by quantitative real-time PCR. The columns represent the relative
expression of these genes. Error bars represent standard deviations.
We obtained 42 A. thaliana transgenic plants, 26 of
which displayed homeotic changes. The vegetative or-
gans of these plants were normal, and no effect in flow-
ering time was detected (data not shown). Phenotypic
alterations were observed only in flowers. Flowers of
these 35S::CsPI transgenic plants seemed to have two
whorls of petals (Figure 2E and F). Sepals in the first
whorl were partially converted into petaloid organs
(Figure 2E, F, G). These petaloid structures expanded like
petals although its size was smaller than that of petals
(Figure 3E and F). Moreover, flowers of some 35S::CsPI
transgenic plants, such as line 13 and 19 showed 5 petals
and 5 petaloid sepals (Figure 2F). Noticeably different
from those of the wild-type flowers, margins of these
petaloid sepals consist of white tissue and surface were
smooth (Figure 2F and G, compare F with A and G with
B separately). Examination by SEM revealed that the
surface of these regions in the 35S::CsPI transgenic
plants was a mosaic composed of both sepal and petal
cells, while these cells were similar in shape and size
(Figure 2H, compare H with C, D). However, flowers of
35S::CsPI-3 and 35S::CsPI-25 were similar to wild-type
A. thaliana. To find whether the severe phenotypes
were correlated with CsPI expression in the trans-
genic plants, quantitative real-time PCR analysis was
performed. Transgenic lines with only 4 petals and 4
petaloid sepals, represented by 35S::CsPI-5 and 35S::
CsPI-15, showed lesser RNA expression of CsPI than
35S::CsPI-13 and 35S::CsPI-19 (Figure 3). However,
the expression of CsPI in these 4 lines was obviously
higher than what in lines 35S::CsPI-3 and 35S::CsPI-25.
These data demonstrated that the accumulation levels
of CsPI transcripts in different lines are consistent with
phenotypic alterations.

Functionality of CsPI in pi-1 mutants of A. thaliana
In addition to the wild-type A. thaliana, CsPI was also
transformed into A. thaliana pi-1 mutant plants. In this
transformation experiments, the A. thaliana AP3 pro-
moter 5D3 was used to drive expression of CsPI in
whorls 2 and 3 of developing A. thaliana flowers in the
pi-1 mutant background (Lamb and Irish 2003).
We obtained 21 independent 5D3::CsPI transgenic pi-1

plants. Among of them, 10 (47.6%) showed full rescue
and 4 (19%) showed strong rescue. In flowers of fully res-
cued plants, petals had the shape of wild-type petals but
were somewhat smaller (Figure 4D). Moreover, the epi-
dermal cells of rescued petals (Figure 4I) resembled those
of the wild-type which were characteristically rounded
(Figure 4J). Petals of strongly rescued flowers were small
and green (Figure 4C), with the epidermal petal cells
which were more similar to those of wild-type petals than
sepals (Figure 4H). The third-whorl floral organs of fully
rescued flowers were not fully extended stamens with



Figure 2 Overexpression of CsPI in wild-type Arabidopsis thaliana. (A-H) phenotypic analysis of transgenic Arabidopsis thaliana plants
ectopically expressing CsPI. (A) Wild Arabidopsis thaliana flower, the arrow labels the first floral organ; (B) Flower bud of the wild Arabidopsis
thaliana; (C) Sepal epidermis of wild Arabidopsis thaliana flower; (D) Petal epidermis of wild Arabidopsis thaliana flower. (E) Flower of 35S::CsPI
transgenic lines, the arrow labels the first floral organ; (F) Flower of 35S::CsPI transgenic lines, which have 5 petals and 5 petaloid sepals, the arrow
labels the first floral organ; (G) Flower bud of the 35S::CsPI transgenic lines; (H) the margin epidermis of the first floral organ from 35S::CsPI
transgenic lines. (A-B, F-G) Scale bars = 0.5 mm; (F-I) Scale bars = 5 μm.
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fertile pollen grains (Figure 4D), while the third floral
whorl of strongly rescued flowers were mosaic organs be-
tween carpel and stamen (Figure 4E). Weak rescue was
also seen for 7 (33.3%) lines, in which neither stamens nor
petals were rescued (Figure 4B).
Here, transgene expression was also determined by

quantitative real-time PCR, which demonstrated that
level of phenotypic rescue is correlated with the expres-
sion level of transgene (Figure 5). For example, the ex-
pression of CsPI was clearly higher in fully rescued 5D3::
CsPI-13 and 5D3::CsPI-20 than in strongly rescued 5D3::
Figure 3 Detection of CsPI expressed in transgenic Arabidopsis
thaliana plants through quantitative real-time PCR analysis and
northern blot analysis. Samples from left to right in turn are WT
(wild-type Arabidopsis thaliana), 35S::CsPI-3, 35S CsPI-25, 35S CsPI-5,
35S CsPI-15; 35S CsPI-13, 35S CsPI-19.
CsPI-7, while the expression of CsPI was clearly lesser in
weakly rescued 5D3::CsPI-2 and 5D3::CsPI-5 than in
strongly rescued 5D3::CsPI-7.
Interaction pattern analysis of CsPI
To investigate the interaction patterns of CsPI proteins
to learn how they worked, yeast two-hybrid assays
were performed. As positive control, we investigated the
interaction between A. thaliana AP3 and PI proteins,
which was marked as AtAP3 and AtPI respectively.
As negative controls, we detected the growth of trans-
formants co-transformed with the fusion plasmid con-
taining the protein and the pGADT7 or the pGBKT7
free vector.
In our experiments, interaction patterns of the full-

length and the MADS-deleted CsPI, CsAP3, AtPI and
AtAP3 were tested. As negative controls, we demon-
strated that transformants co-transformed with the fu-
sion plasmid containing the protein and the pGADT7 or
the pGBKT7 free vector did not grow on the selective
medium (Figure 6H, I). As positive control, the MADS-
deleted AtPI and AtAP3 sequence formed heterodimers
(Figure 6) (Yang et al. 2003). Dimerization could not be
observed for full-length CsPI, CsAP3, AtPI and AtAP3
(data not shown). However, the MADS-deleted CsPI can
form heterodimers with AtAP3 and CsAP3 (Figure 6 A
and B). Since specificity of heterodimerization is largely
based on the sequence of the I-domain and K-domain
(Kaufmann et al. 2005; Riechmann et al. 1996; Yang
et al. 2003), this applies very likely also to the full length



Figure 4 Calibration of the degree of rescue of transgenic flowers. (A) pi-1 mutant flower; (B-D) pi-1 homozygous mutant flowers of transgenic
plants with different degrees of rescue: (B) showed weak rescue, the arrow labels the mosaic stamen, (C) strong rescue, and (D) full rescue; (E) Wild-type
flower; (F) Petal epidermis of the flower shown in (A); (G) Petal epidermal cells of the flower shown in (B); (H) Petal epidermal cells of the flower shown
in (C); (I) Petal epidermal cells of the flower shown in (D); (J) Petal epidermis of a wild-type Arabidopsis thaliana flower. (K) Sepal epidermis of a wild-type
A. thaliana flower. Bars: (A–E) 0.5 mm; (G–M) 10 μm.
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(MIKC) sequence. Moreover, the MADS-deleted CsPI
can also form homodimerization (Figure 6C), a feature
which has been found also for some other AP3-like and
PI-like proteins of non-core eudicots, including mono-
cots such as lily (Lilium) and tulip (Tulipa), but not in
core eudicots (Hsu and Yang 2002; Su et al. 2008; Tzeng
et al. 2004; Winter et al. 2002). However, the MADS-
deleted protein AtPI was not able to interact with itself
(Figure 6G).
Figure 5 Detection of CsPI expressed in transgenic Arabidopsis thalian
and northern blot analysis. Samples from left to right in turn are pi-1, 5D
Discussion
According to the ABCDE model, B class genes, including
both PISTILLATA (PI) and APETALA3 (AP3) homologs,
contribute to petal and stamen development. Functional
analysis concentrated on monocots and eudicots suggested
that the function of the B-class genes is conserved. In this
study, we demonstrated the functional conservation of the
PI-like genes between the early-diverging angiosperm
C. spicatus and A. thaliana.
a pi-1 mutant plants through quantitative real-time PCR analysis
3::CsPI-2, 5D3::CsPI-10, 5D3::CsPI-17, 5D3::CsPI-13, 5D3::CsPI-20.



Figure 6 Interaction patterns of MADS-deleted AtAP3, AtPI,
CsAP3 and CsPI. Serial dilutions of 105–102 AH109 cells containing
different plasmid combinations were grown on the selective medium
SD-LTHA + 5 mM 3-AT. L = Leucine; T = Tryptophan; H = Histidine;
A = Adenine; 3-AT = 3-amino-1, 2, 4-triazole.

Su et al. Botanical Studies 2014, 55:21 Page 7 of 9
http://www.as-botanicalstudies.com/content/55/1/21
To identify the function of CsPI in C. spicatus, we de-
tected the expression pattern through quantitative real-
time PCR. CsPI was expressed in a broad range, includ-
ing the leaves, bracts, stamens and carpels. The expres-
sion pattern of CsPI was different from that of the other
C. spicatus B-class gene CsAP3, which was found to be
exclusively expressed in stamens (Li et al. 2005). The ex-
pression pattern was also different with that of the core
eudicots AP3/PI genes, which are expressed restricted to
the second and third whorls (reviewed by Kim et al.
2005). However, this pattern was consistent with those
of their counterparts in early-diverging angiosperms.
Kim et al. also found that PI transcripts were detected in
petals, stamens and carpels in early-diverging such as in
Amborella trichopoda and Nuphar advena (Kim et al.
2005). Similarly, AcPI in monocot Ananas comosus was
expressed in stems, leaves, bracts and sepals, petals, sta-
mens and carpels (Lv et al. 2012). The broader range of
expression of PI homologs is inferred to be the ancestral
pattern for all angiosperms (Kim et al. 2005). However,
it is worth mentioning that strong expression of CsPI
was only detected in stamens. Although MADS-box
gene function is often correlated with gene expression
pattern, transient and/or weak expression does not cor-
respond to a known genetic function (reviewed by Kim
et al. 2005). Therefore, CsPI may mainly function on sta-
men development in C. spicatus. Compatible with this
hypothesis, the complementation of the third whorl floral
organs of the pi-1 mutant plants were observed when
CsPI was expressed under the control of the AP3 pro-
moter 5D3. The phenotype is also observed in pi mutant
plants transformed with PI and the PI-like gene Zmm16
from maize under the control of the A. thaliana AP3
promoter (Lamb and Irish 2003; Piwarzyk et al. 2007;
Whipple et al. 2004). These results suggested that the
PI-like gene CsPI from the early-diverging C. spicatus
conserved the function on stamen development.
Most interestingly, CsPI also showed function on the

petal development when it was expressed in wild-type
or pi mutant A. thaliana plants. Like to those of the
A. thaliana pi mutant plants expressing PI or the PI-
like gene Zmm16 (Lamb and Irish 2003; Piwarzyk
et al. 2007; Whipple et al. 2004; Yang et al. 2003), the sec-
ond whorl floral organs were rescued when 5D3::CsPI
was transformed into pi-1 mutant plants. In line with
this, the 35S::CsPI transgenic plants exhibited a partial
conversion of sepals to petaloid organs. This phenotype
is similar to that of the 35S::PI A. thaliana plants. It has
been reported that the 35S::PI A. thaliana also modifies
sepals into petaloid organs but no ectopic stamen is
formed (Krizek and Meyerowitz 1996; Lamb and Irish
2003; Yang et al. 2003). The only slight difference is
that flowers of some 35S::CsPI plants showed an increase
in the number of the first and the second floral organs.
This can be attributed to the different expression levels
as shown in quantitative real-time PCR analysis and
northern blot analysis. Alternatively, the expression
level of CsPI may be correlated with the number of
petals.
As to why CsPI showed functions in A. thaliana simi-

lar to those of PI, it is possibly provided by the yeast
two-hybrid analysis, which revealed that CsPI proteins
can form heterodimers with AtAP3 proteins. It has been
reported that the A. thaliana AtAP3 gene was faintly
expressed in the first floral organ as well as in the second
and the third floral organs (Jack et al. 1992; Smaczniaka
et al. 2012). Therefore, the fact of transforming sepal into
petalloid structures or rescue the second and the third
whorl of the pi-1 mutant plants might be due to the same
fact as that of the A. thaliana genes, both AP3 and PI
should be present together with SEP genes (Krizek and
Meyerowitz 1996).
Alternatively, homodimers of CsPI may also be able to

act to specify petals with AtAP3. As shown, CsPI can
form homodimers besides heterodimers. This feature
also has been found for some other class B proteins of
gymnosperms and non-core eudicots (Chen et al. 2012;
Hsu and Yang 2002; Liu et al. 2013; Liu et al. 2010; Su
et al. 2008; Tzeng et al. 2004; Winter et al. 2002; Yang et al.
2003), but not in core eudicots. For example, proteins
transformed by Lilium longiflorum PI-like genes LMADS8
and LMADS9 can also form homodimers besides het-
erodimers (Chen et al. 2012). It’s worth noting that
flowers of the A. thaliana overexpressed the Lilium longi-
florum LMADS8/9 (PI-like) also showed partially trans-
formation of sepals to petaloid organs and homodimers
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of LMADS8/9 were able to bind to the CArG1 of AtAP3
(Chen et al. 2012). Moreover, C-terminal deleted HoPI
(PI-like) proteins from Hedyosmum orientale (Chlor-
anthaceae) lost the petal identity function in A. thaliana
as they failed to form homodimers (Liu et al. 2013). For
these facts, we can’t exclude such a scenario for homodi-
mers of CsPI to act in petal development in A. thaliana.
This interaction pattern may represent an ancient flexible
interaction of AP3 and PI lineage proteins (Liu et al. 2013).
This finding that CsPI has capability to specify petal

identity in A. thaliana was compatible with the view that
the perianthless state of C. spicatus is derived rather
than ancestral (Li et al. 2005). As to the loss of petals, we
prefer the hypothesis that the B function,which requires
the concerted expression of AP3 and PI homologues, may
not contribute to petal development in Chloranthaceae
(Liu et al. 2013). In H. orientale (Chloranthaceae), HoPI
was broadly expressed in all floral organs, whereas HoAP3
was restricted to stamens (Liu et al. 2013). In perianthless
C. spicatus, CsPI reported here, was also broadly expressed
in all floral organs, but CsAP3 was restricted to stamens
(Li et al. 2005). Therefore, the overlap of AP3 and PI
homologue expression is limited to the stamens in Chlor-
anthaceae. Yet, coordinated expression of the AP3- and
PI-like genes is correlated with the identity of petaloid or-
gans (reviewed by Liu et al. 2013). These data appear to
suggest that the main reason for the loss of petals in
Chloranthaceae maybe not the floral homeotic B-function.
Nonetheless, we still can’t rule out the possibility that
changes in cis-regulatory elements or trans-regulatory fac-
tors that regulate B-class genes are causally linked to the
greatly reduced perianth in Chloranthus (Li et al. 2005).
As shown in this paper, some 35S::CsPI plants showed
an increase in the number of the first and the second
floral organs. These plants showed expression of CsPI
which was much higher than that of other plants. The
data implied that weak expression of B class genes in
C. spicatus may be correlated with the reduction of
perianth. Consistent with this hypothesis, it has been re-
ported that independent petal losses within buttercup
family (Ranunculaceae) were strongly associated with
decreased or eliminated expression of a B-class gene,
APETALA3-3 (AP3-3) (Zhang et al. 2013). It would be in-
teresting to investigate, therefore, whether there are spe-
cific cis-regulatory elements controlling the expression of
CsAP3 and CsPI in petals.

Conclusions
CsPI retained the ancestral function in stamen identity
and showed capability to specify petal development
in A. thaliana. These data suggested that the role of
PI-like gene was conserved in the early-diverging angio-
sperm Chloranthus spicatus and the core-eudicot Arabi-
dopsis thaliana. CsPI can form homodimers besides
heterodimers and they may both be involved in petal
development in A. thaliana. Moreover, it seems likely
that the loss of petals maybe not directly caused by the
floral homeotic B-function in Chloranthus spicatus.
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