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How plants cope with heavy metals
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Abstract

phytoremediation and biofortification.

special focus on the cellular level.

Heavy metals are naturally occurring in the earth’s crust but anthropogenic and industrial activities have led to
drastic environmental pollutions in distinct areas. Plants are able to colonize such sites due to several mechanisms
of heavy metal tolerance. Understanding of these pathways enables different fruitful approaches like

Therefore, this review addresses mechanisms of heavy metal tolerance and toxicity in plants possessing a
sophisticated network for maintenance of metal homeostasis. Key elements of this are chelation and sequestration
which result either in removal of toxic metal from sensitive sites or conduct essential metal to their specific cellular
destination. This implies shared pathways which can result in toxic symptoms especially in an excess of metal.
These overlaps go on with signal transduction pathways induced by heavy metals which include common
elements of other signal cascades. Nevertheless, there are specific reactions some of them will be discussed with
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Review

Introduction

Basal heavy metal tolerance is presumably found in all
plant species. Thereby, they run a complex system consist-
ing of uptake/efflux, transport/sequestration and chelation
(Figure 1). These key elements are involved tightly in
homeostasis of essential metal micronutrients. The more
or less characteristic of these elements divide the plant
kingdom into two groups: (hyper)accumulating and non-
accumulating plants.

This review will provide an overview about these toler-
ance mechanisms with focussing on the cellular level and
signalling pathways induced by metals. The discussion of
some examples will underline the multitude and complex-
ity of signals and responses. It will trigger further work on
responses towards heavy metals in plants especially in the
way of low, environmentally relevant metal concentrations.

Classification in non-and (hyper) accumulator plants

The majority of plants can be classified as non-accumulator
plants. Nevertheless, all have to cope with heavy metals for
nutrition purposes and growing in metalliferous soils, re-
spectively. Hence, they have to possess finely tuned
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mechanisms for living with even toxic heavy metals (Hall
2002, Clemens 2001, 2006). The simplest strategy is to
avoid metal uptake from soil or to exclude it preventing
metal movement into shoots. Additionally, elements for the
acquisition and sequestration of essential metals are often
used. However, this can cause interferences with the plant
metal homeostasis and probably induce toxic symptoms.

Such symptoms are manifold, for a review see (Fodor
et al. 2002): They comprise impairments of chlorophyll
synthesis resulting in chlorotic leaves, changed ratios of
chlorophyll @ and b (Murthy et al. 1984, Viehweger and
Geipel 2010, Mysliwa-Kurdziel et al. 2004) and photosyn-
thetic activity (Kipper et al. 2007), dwarfism of plants or
effects on root ultrastructure (Barcelo et al. 2004) (Table 1).
However, it is not clear if these impacts are either cause or
consequence of metabolic perturbations in heavy metal
exposed plants. Hence, it is necessary to investigate metal
tolerance and toxicity on cellular and molecular level as it
will be discussed in the following Sections.

A special case of metal tolerance is hypertolerance. Metal-
hypertolerant plants except hyperaccumulators are able to
exclude metals from their tissues in order to minimize metal
accumulation especially in their aboveground tissues (Baker
1981). This is the key difference to hyperaccumulating
plants. Nevertheless, metal hyperaccumulation is associated
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Figure 1 Short overview about some important aspects of cellular metal interaction. Arrows indicate interactions between different elements.

with metal hypertolerance revealing another strategy of
detoxification.

Metal hyperaccumulating plants are characterized by
a shoot/root ratio of metal accumulation>1 (Baker
et al. 1994). Such an outstanding metal accumulation
is achieved by:

(1) Overexpression of transport systems required for
enhanced sequestration,

(2) Tissue-specific expression of proteins,

(3) High metal chelator concentrations.

Transcriptomic studies revealed that metal hyperaccumu-
lation in Arabidopsis halleri has been associated with more
than 30 candidate genes which are higher expressed com-
pared with the nonaccumulator A. thaliana (Becher et al.
2004). (Pence et al. 2000) could show that the Zn*" trans-
porter ZnT1 is overexpressed in the hyperaccumulator
Noccaea caerulescens compared to the non-accumulator N.
arvense. Prominent examples are metal pumps belonging
to the Pig-adenosine triphosphatase (heavy-metal ATPases,
HMA) transporter family (Axelsen and Palmgren 1998).
These transporters are able to transport different metals

Table 1 Some examples of obvious toxic symptoms induced by metals

Metal Toxic symptoms

Reference

Excess or deficiency of copper,

Impact on Photosynthetic apparatus: chlorotic leaves,

Ouzounidou 1995, Viehweger and Geipel 2010,

excess of uranium, zinc, cadmium

Excess of aluminium,
cadmium, copper

Excess of aluminium,
cadmium, lead

Cadmium, lead, uranium

changed ratios of chlorophyll a and b, decreasing
net photosynthetic rate

Effects on root ultrastructure: inhibition
of root elongation, increase in volume of
cortex cells, damage to epidermis

Lipid peroxidation of membranes —
membrane leakage, change of lipid composition

Changes in cellular concentrations of essential
micronutrients like iron, calcium, manganese, zinc

Monnet et al. 2001, Prasad 1995, reviewed in
Mysliwa-Kurdziel et al. 2004

Kidd et al. 2001, Vazquez et al. 1992, Ouzounidou,
1995, reviewed in Barcelo et al. 2004

Kochian 1995, Hernandez and Cooke 1997,
Stefanov et al. 1995

Hernandez et al. 1998, Zhang et al. 2000,
Viehweger and Geipel 2010

It should be noted that not only excessive metal concentrations causes toxicity.
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(like Zn**, Cu*, Cu**, Cd**, Pb**, Ni?*, Co*") across bio-
logical membranes. Thereby, HMA2 and HMA4 drive
metal efflux out of the cell in A. thaliana (Eren and
Argliello 2004) and promote xylem loading of metal in N.
caeruslecens (Papoyan and Kochian 2004). HMA4 is re-
sponsible for zinc hyperaccumulation in A. halleri as it
was shown by a RNA interference approach for down-
regulation of its expression. Additionally, transfer of the
HMA4 gene to A. thaliana enables zinc partitioning into
xylem vessels and up-regulated specific genes charac-
teristic for zinc hyperaccumulators (Becher et al. 2004,
Hanikenne et al. 2008). This example shows impressively
the importance of regulatory gene expression and gene
copy number expansions for the special trait of metal
hyperaccumulation. In contrast, HMA3 is localized at the
tonoplast enabling vacuolar metal influx and therefore
cellular sequestration (Gravot et al. 2004). Another vacu-
olar membrane transporter, the Zn/H" antiporter (metal
tolerance protein, MTP1 a member of cation diffusion
facilitator (CDF) protein family) is highly overexpressed in
the aforementioned hyperaccumulating plants compared
to their closed related non-accumulators (Drager et al.
2004). MTP1 is able to create a metal sink in the shoots
(Gustin et al. 2009) but there are controversial discussions
about its importance for hyperaccumulation.

The trait of metal chelation will be discussed in the
following section.

However, the question poses: What is the selective advan-
tage of metal hyperaccumulation? Most likely, this special
trait offers a defense against pathogen and/or pathogen at-
tack (Freeman et al. 2006, Boyd 2007). Nevertheless, funda-
mental questions concerning mechanisms and properties of
hyperaccumulation remain elusive. This knowledge has a
broad relevance in general because of accumulation of toxic
metals or developments of lacks of essential micronutrients
throughout the food chain (idea of biofortification) and for
phytoremediation or phytomining processes.

Heavy metal tolerance and toxicity on cellular level
Importance of metal speciation on tolerance and toxicity
Extracellular metal speciation
Bioavailability of heavy metals in terrestrial ecosystems de-
pends on their physico-chemical form (Blanco et al. 2004),
on soil characteristics (Mortvedt 1994) and on growing
plant species (Viehweger and Geipel 2010). Another import-
ant aspect is bioavailability of essential metals like iron be-
cause mechanisms facilitating the uptake of essential metals
could provide a gate for non-essential even toxic substances.
A key element of acquisition of nutritional metals is the
release of exudates with chelator properties from the roots
into the rhizosphere. This complex formation enhances
metal solubility and therefore provides a better uptake into
the plant. A prominent example is the release of phenolic
compounds caused by iron deficiency such as caffeic acid
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from Arachis hypogaea (Romheld and Marschner 1986),
flavonoids from Lupinus albus (Weisskopf et al. 2006) or
flavins from Beta vulgaris (Susin et al. 1993) (Cesco et al.
2010). Recent results showed evidence that flavonoids can
facilitate heavy metal tolerance in A. thaliana (Keilig and
Ludwig-Miiller 2009). Besides iron chelation, quercetin
undergoes a complexation with copper ions (El Hajji et al.
2006, Pekal et al. 2011) and uranium (Geipel et al. 2010).
An example to underline this issue: Recently a close rela-
tion between iron and uranium uptake was shown in A.
halleri, where iron starvation greatly enhanced uranium
uptake (Viehweger and Geipel 2010). The stability con-
stants of U(VI) and Fe(III) bound to Flavinemononucleo-
tide (FMN) are relatively high (log K of 16 for U(VI) and
log K of 24 for Fe(III), mononucleotide complexes) (Geipel
and Viehweger, unpublished results). Additionally to com-
plex formations, these compounds can exhibit reductive
activity towards redox-active metals changing the redox
state of metals and therefore their speciation. This complex
formation and reduction of non-essential heavy metals has
a double edged site: On one hand, it can be used as a
defense strategy producing less soluble metal complexes
unsuitable for entering the plant. On the other hand, it can
stabilize unstable metal redox states and competes with
these processes required for acquisition of essential metals.

Intracellular metal speciation
If heavy metals enter the cytoplasm they will be bound
by an appropriate cellular compound immediately. This
avoids the handling of possibly toxic, free cellular metal
ions and provides a coordinated involvement in meta-
bolic pathways such as specific incorporation in metallo-
proteins or detoxification. Ligands for metal ions are
mostly low molecular-weight compounds, a comprehen-
sive review was provided by (Haydon and Cobbett 2007).
Well known cellular metal chelators are nicotianamine
(NA) and organic acids like citrate (Curie et al. 2009, Rauser
1999). NA exhibits very high stability constants for the
binding of transition metal cations (for comparison of
some stability constants see (Blindauer and Schmid 2010)
and is required in A. thaliana to maintain iron, zinc and
copper homeostasis (Krimer 2010). As it was mentioned
in a previous chapter, the concentrations of this chelator
are higher in hyperaccumulators than in closely related
nonaccumulators (Vacchina et al. 2003). Citrate is the pre-
dominant ligand for zinc in leaves of N. caerulescens (Salt
et al. 1999, Kipper et al. 2000), but other organic acids
such as malate are also associated with metal tolerance.
(Mihalik et al. 2012) published recently that citrate facili-
tates uranium translocation from root to shoot interfering
iron and zinc transport. This underlines the importance of
organic acids for transport and sequestration of metal ions
in different plant tissues and cellular compartments like
the vacuole (Kramer et al. 2000, Ma et al. 2005).
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Amino acids like proline are probably involved in metal
chelation (Sharma and Dietz, 2006). A key role as nickel
chelator has the free amino acid histidine. Nickel increased
the histidine content in the xylem of the hyperaccumulator
Alyssum lesbiacum around 36-fold higher than of the non-
accumulator Alyssum montanum (Kramer et al. 1996).

A further important function of metal chelation is the
possible enhancement of metal solubility.

Another low molecular-weight chelator is glutathione
(reduced form GSH, oxidized form GSSG) which will be
discussed in the next chapter. Functionalities of GSH
(thiol and carboxylic groups) make it suitable for complex
formation with heavy metals (Canovas et al. 2004, Frost
et al. 2011). Complexation via the thiolate functionality
is necessary for the induction of phytochelatines (PCs)
(Vatamaniuk et al. 2000). Metal — PC complexes are se-
questered into the vacuoles via ABC-type transporters
and therefore increase metal tolerance (Mendoza-
Cozatl et al. 2010, Song et al. 2010). Overexpression of
a key enzyme in GSH biosynthesis resulted in higher
steady-state levels of GSH and enhanced nickel, cobalt,
zinc and to a lesser extent cadmium tolerance in A.
thaliana (Freeman et al. 2004, Freeman and Salt 2007).
This increase was proposed to result from GSH medi-
ated reduction of oxidative stress caused by metal ex-
posure (see next chapter).

Metallothioneins (MTs) are sulfur containing proteins
inherently being highly flexible in their structure. This
flexibility allows different coordination geometries for
binding of different metals. Nevertheless, each MT ex-
hibits preferences for a special metal ion due to coord-
ination residues other than cysteine and differences in
folding and stability in dependence on the bound metal
(Leszczyszyn et al. 2007).

Impact of heavy metals on the cellular redox
environment

Heavy metals interact with the cellular redox environ-
ment in different ways:

(1) They are able to induce the generation of reactive
oxygen species (ROS),

(2) Redox-active metals can directly generate ROS via
Fenton like reactions and the Haber-Weiss cycle
(Stohs and Bagchis 1995, Sharma and Dietz 2009)

(3) Heavy metal detoxification consumes a major
element of cellular redox homeostasis namely
glutathione as direct chelator and/or as precursor of
phytochelatines.

Because of the outstanding importance of the thiol tri-
peptide glutathione [y-Glu-Cys-Gly], this part of the
chapter will focus on its interaction with heavy metals in
afore mentioned ways.

Page 4 of 12

The tightly regulated cellular glutathione homeostasis
(GSH/GSSG, ratios of 100:1 are typical values) is im-
paired by heavy metal accumulation. This can be one
reason for conflicting results regarding the GSH content
upon metal exposure. Furthermore, the different points
of sampling time should be attended. Copper or cad-
mium amendment in Arabidopsis resulted in only few
changes of GSH levels in leaves during the initial 7 days
(Collin et al. 2008). (Vandenhove et al. 2006) found altered
levels of the glutathione pool depending on the applied ur-
anium concentrations in Phaseolus vulgaris after a week of
exposure. Concerning the initial phase of metal contact
(up to 24 hours), there was no significant change of GSH
whereas the amount of GSSG increased upon exposure of
moderate uranium concentrations (< 10 pM) in cell sus-
pensions of canola (Brassica napus) (Viehweger et al.
2011. This indicates clearly its function as redox couple
(Ephza=-264 mV at 25°C, Schafer and Buettner 2001)
and underlines the consumption of cellular reducing cap-
acity during heavy metal accumulation and causes oxida-
tive stress.

This reductive activity eliminates ROS generated either
directly or indirectly by metals. The detoxification of ROS
is GSH dependent. Such GSH consuming processes
and an excess of ROS induce GSH synthesis (Foyer and
Noctor 2005a, Noctor et al. 2011). Hence, plant cell are
able to cope with moderate imbalances of the glutathione
pool. However, higher heavy metal concentrations disrupt
these elements of tolerance leading to unspecified reac-
tions of hypersensitive response. Hence, care should be
taken when extremely high, environmentally not relevant
metal concentrations are applied experimentally.

Another GSH consuming process and thereby impairing
the glutathione homeostasis is the synthesis of phytochela-
tines (PC) (Grill et al. 1985). These heavy metal chelating
peptides consist of repetitive y-glutamylcysteine units and
are rapidly synthesized after metal exposure. However,
not all heavy metals are capable of inducing PC synthe-
sis such as cobalt or manganese (Grill et al. 1987). A
prerequisite is the GSH — metal binding via thiolate
coordination (Vatamaniuk et al. 2000). In contrast, heavy
metal hyperaccumulators like N. caerulescens or A. halleri
probably do not use GSH or PCs in metal hypertolerance
mechanisms (Schat et al. 2002, Sun et al. 2007).

Antioxidant defense mechanisms keep the formed ROS
at a low level nevertheless heavy metal stress disrupts the
equilibrium between ROS generation and detoxification
(Sharma and Dietz 2009). Plant cells bear a sophisticated
antioxidant network based on non-enzymatic such as
glutathione, ascorbate and enzymatic antioxidants like
superoxide dismutase (SOD), glutathione reductase (GR) or
catalase (CAT). Heavy metal accumulation caused altered
capacities of such enzymes depending on plant species. For
instance, Tagets erecta (Cd accumulator) exhibited decreased
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levels of SOD, GR and CAT towards cadmium contact
whereas Avena strigosa (Cd tolerant accumulator) showed
increased activities towards the same Cd concentrations
(Uraguchi et al. 2006). These few examples illustrate that a
strong antioxidant defense system is at least a beneficial
trait in heavy metal tolerance (for more examples see
Sharma and Dietz, 2009). However, there is no reliable basis
for defining mechanistic relationships due to the lack of dis-
tinct patterns of enzyme activity. Therefore, the heavy
metal, its concentration and the plant species should be
carefully taken into account when investigating redox im-
balances and oxidative stress induced by heavy metals.

Relation between toxicity and tolerance

Targets of metal toxicity

Symptoms of metal toxicity have been studied in several
plant systems and under various conditions. They can be
divided in direct targets or indirect metal induced im-
pairments of physiological pathways as it was discussed
in previous sections already.

Direct targets of metals are often metalloproteins and
metal binding molecules like chlorophyll (Kipper et al.
1996). Metalloproteins contain coordinated transition
metals which can be substituted by chemically similar
other transition metals (Table 2). A prominent example
is the replacement of magnesium by nickel, cobalt or
zinc in the enzyme ribulose-1,5-bisphosphate-carboxyl-
ase/oxygenase (Wildner and Henkel 1979, van Assche
and Clijsters 1986) which resulted in loss of enzyme activ-
ity. Cadmium interferes with the homeostasis of the essen-
tial metals zinc and calcium (reviewed for animal cells in
Moulis 2010). A surprising finding was the replacement of
iron by uranium in ferritin in the microorganism Pyrococ-
cus furiosus (Cvetkovic et al. 2010). The Irving-Williams
series provides basic indication for the formation of stable
complexes between cations and organic ligands (Irving
and Williams 1953). A challenge in the future will be the
characterisation of such metalloproteins in-vivo because
of few, environmentally relevant metal concentrations
which requires sensitive detection systems. Novel tech-
nologies like synchrotron X-ray fluorescence microscopy
provide a powerful non-destructive technique for quanti-
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tative mapping of of transition metal distribution in
hydrated biological samples (Fahrni 2007, Punshon et al.
2009, Donner et al. 2012). An emerging field is the investi-
gation of the redox chemistry driven by some transition
metals which can result in dramatic consequences for
metabolic pathways.

Beside afore mentioned interactions between essential
and non-essential heavy metals, such competitions can
also occur between micronutrients (Foy et al. 1978).
Known examples are interactions between iron and cop-
per (Harris 1994) or iron and zinc (House 1999). These in-
fluences are mostly negative nevertheless there can be
positive growth parameters in the case of antagonistic re-
sponses according to the classification done by Symeonidis
and Karataglis (1992). A comprehensive review addressing
such interactions was written by (Krupa et al. 2002).

These few examples underlines that heavy metal tox-
icity is partly due to the impairment of the tightly regu-
lated homeostasis of essential metals.

Mechanisms of tolerance

As it mentioned earlier, plant cells possess a complex
network for coping with heavy metals and some reac-
tions have been touched upon in this article.

Generally speaking, the key elements of basal tolerance
are sequestration and efflux (Clemens 2001). These pro-
cesses resulted in the removal of toxic ions from sensitive
cellular loci. Thereby transport is facilitated by metal che-
lators in most cases (see previous section) and requires ef-
ficient transport systems.

In addition to previously discussed cellular metal ligands,
metallochaperones play an important role in facilitation of
essential metals to reach the physiological destination in
distinct cellular compartments without inflicting damage. A
comprehensive review concerning copper metallochaper-
ones was published by (Robinson and Winge 2010) re-
cently. Another cellular strategy for the insertion of the
correct metal cofactor into metalloproteins (metallation) is
compartmentalization. Therefore distinct metals are stored
at different subcellular compartments and controlled deliv-
ered to their final destinations via specific transport systems
(Tottey et al. 2008).

Table 2 Some examples of metalloproteins which can be modified by metal substitution

Metal Native metal Protein Reference

Cd, Cu, Fe, Mn, Pb, Zn Mg RuBisCo Reviewed in Van Assche and Clijsters 1990, Siedlecka et al. 2001
Cd Mn Oxygen evolving complex in photosystem Il Baszynski et al. 1980

U, Al, Pb Fe Ferritin Den Auwer et al. 2005, Johnston et al. 1993, Cvetkovic et al. 2010
Ni Zn Alanyl-tRNA editing hydrolase Cvetkovic et al. 2010

Zn Ca Endonuclease McCabe et al. 1992

Co Zn ATP sulfurylase Gavel et al. 1998

Pb, Cd Ca Calmodulin Habermann et al. 1983, Richardt et al. 1986

It should be noted that not all examples were determined in plants.
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Plant cells possess a variety of transport systems in-
cluding the already mentioned heavy metal ATPases
(HMAs), Nramps (natural resistance associated macro-
phage proteins), the cation diffusion facilitator (CDF)
family, the ZIP (ZRT, IRT-like proteins) family, ABC
transporters (ATP-binding cassette), cation antiporters
and other putative transition metal transporters. A more
detailed overview is provided by reviews written by
Guerinot (2000), Hall and Williams (2003), Kriamer et al.
(2007) or (Puig and Penarrubia 2009) and references
therein. Although they play a crucial role in maintenance
the homeostasis of essential metal micronutrients they are
involved in detoxification of non-essential or excess metal.
Their overexpression and higher cellular density as special
trait in metal hyperaccumulators was discussed in a previ-
ous chapter. Various transport systems can act as a gate
for various metals because of chemical similarities of
metal ions or their complexes. A prominent example for
this is the iron-regulated transporter (IRT1) at the plasma
membrane of roots of A. thaliana which exhibits a broad
substrate range (Korshunova et al. 1999).

As it was mentioned before, metal sequestration in dis-
tinct cellular compartments plays a pivotal role in metal tol-
erance and supplement with essential metals. For this
purpose cells provide a coordinated set of transport systems
in each cellular membrane. An important metal sink in
metal tolerant plants is the vacuole. A prominent example
is the transport of metal-phytochelatin complexes into the
vacuole by an unknown ABC transporter or by cation/pro-
ton exchanger (CAX) (Schneider et al. 2009). However, re-
cent studies suggested that the phytochelatin-cadmium
complex formation plays a more important role in detoxifi-
cation than vacuole sequestration (Wojas et al. 2010).

Signals generated by heavy metal exposure

As it was discussed in previous sections, heavy metals
interact with metabolic pathways and therefore are able
to generate signals. Thereby, the similarity of chemical
properties of different metals plays a pivotal role espe-
cially between essential and non-essential metals. How-
ever, such interaction does not inevitably have a
negative impact for the plant at all points. For instance,
Arabidopsis or carrot plants exhibited an obvious better
root elongation when growing with uranium amendment
(Straczek et al. 2009, Misson et al. 2009, Viehweger
and Geipel 2010) probably due to the excretion of
phenolic compounds into the rhizosphere which can
stimulate root elongation (Wang 1991). This example
shows as well the importance of investigations con-
cerning whole networks of metal metabolism. Recent
experiments suggested a facilitated iron acquisition in
A. halleri growing on a former uranium mining dump
which provided very low soluble iron minerals (Viehweger
and Geipel 2010, unpublished results). Table 3 provides

Page 6 of 12

an insight in the complex signaling network induced by
various environmental stress conditions.

Signal perception

Generally, a signal transduction pathway starts with the
signal perception in the case of heavy metals with its rec-
ognition by the cell. Up to date, much less knowledge is
available about a primary recognition for instance by a re-
ceptor. It is likely that the metal is mainly perceived by
plasma membrane proteins responsible for metal acquisi-
tion like reductases and transporters. However, other sen-
sors can be expected resulting from physical alterations in
cellular structures induced by metal exposure. If the metal
is recognised by cells the further cellular signal transduc-
tion will use elements of common signalling pathways like
calcium fluxes.

Cellular secondary signal molecules

The most prominent secondary messenger is calcium
(reviewed e.g. in Xiong and Zhu 2002). Treatments of
the brown algae Fucus serratus with different copper
concentrations inhibited or induced cytoplasmic calcium
fluxes (Nielsen et al. 2003). These alternate fluxes might
initiate calcium dependent protein kinases and therefore
couple this universal inorganic signal to specific protein
phosphorylation cascades like MAP kinase activities
(Yeh et al. 2007).

Another inorganic signal is the proton which also en-
ables fast concentration shifts (but not so fast like calcium).
Proton fluxes can establish so-called “pH-signatures” in
the cytoplasm (Roos et al. 1998) and thus creating specific
micro-areas with for example enhanced metal solubility.
Iron deficiency causes a proton efflux driven by a P-type
proton ATPase (AHA7) acidifying the rhizosphere (Santi
and Schmidt 2009) which induces a pH-shift in the near
neutral cytoplasm. However, nothing is known about a
possible impact on cellular signaling.

As it was mentioned in chapter 3.2 heavy metals are
able to elicit the production of ROS. Beside their activity
as aggressively reacting oxidants towards cellular macro-
molecules they can act as signal transduction molecules
which will be discussed in Section Redox signaling induced
by heavy metals.

Stress signal transduction by plant hormones

During heavy metal exposure, plants produce increased
amounts of hormones such as abscisic acid or ethylene
(Zengin 2006, Maksymiec 2011). Additionally, the involve-
ment of jasmonic acid in the early response to cadmium
contact in Phaseolus coccineus was described recently by
Maksymiec (2011). Hence, it seems to be obviously, that el-
ements of octadecanoid pathway interacts in metal induced
signalling and even act in potential defence reactions. This
pathway is part of the oxidative/redox system of plants



Table 3 Overview of some heavy metal triggered signals in comparison to other environmental stresses

Heavy metal

Signal

Other stress conditions

Cellular responses

References

Copper

Cadmium, chromium

Iron

Cobalt, zinc

Cadmium, copper

Redox-active metals like iron,
copper; almost all heavy metals
at higher concentrations

Calcium fluxes

Mitogen activated protein
kinase (MAPK) pathways

pH shifts
Plant hormones like

abscisic acid or ethylene

Jasmonic acid

Reactive oxygen species

Cold, drought, salinity

Osmotic stress, pathogen contact

Pathogen contact

Cold, drought, salinity

Pathogen contact, sugar, drought, salinity

Pathogen contact, cold, drought,
salinity, high light intensity

Phosphoprotein cascades, 2" signalling molecules

Activation of transcription factors
and stress-responsive genes

Induction of secondary metabolism

Calcium signalling, guard cell
regulation (water balance)

Defence/stress response, development,
induction of secondary metabolism

Phosphoprotein cascades, activation of
transcription factors and stress-responsive
genes, activation of antioxidative defence

Nielson et al. Nielsen et al. 2003, reviewed
by Sanders et al. 1999, Knight 2000

Liu et al. 2010, Ding et al. 2009,
reviewed in Xiong et al. 2002

Marschner and Romheld 1983,
Viehweger et al. 2006

Zengin 2006, reviewed in Zhu 2002

Agrawal et al. 2003, Chen et al. 2006,
Maksymiec 2011, reviewed in Howe and
Schilmiller 2002, Turner et al. 2002

Reviewed in Foyer and Noctor
20053, Ahmad et al. 2008

It is not comprehensive but gives an insight in the complex cellular signalling network and the resultant metabolic reactions.
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which was discussed in a previous section already. It un-
derlines the tight regulation of metal homeostasis in a
widespread network consisting of various elements.

Signaling by transcription factors

A well investigated example is the function of transcrip-
tion factors (TFs) during iron starvation in plants. A de-
tailed review concerning this was published recently
(Hindt and Guerinot 2012). Early results obtained by
Brown and Chaney (1971) and Brown and Ambler
(1974) suggested a pivotal role of a basic helix-loop-helix
(bHLH) transcription factor (named FER) in iron defi-
ciency responses using an iron inefficient tomato mutant
(Lycopersicon esculentum). FER encodes bHLH which
controls the expression of genes with key functions in
iron acquisition such as the iron-regulated transporter
(IRT) and the ferric oxidase reductase (FRO) orthologs
in tomato (Ling et al. 2002). The Arabidopsis FER ortho-
log is FER-like iron deficiency-induced transcription fac-
tor (FIT) (Colangelo and Guerinot 2004, Jakoby et al.
2004, Yuan et al. 2005). FIT form heterodimers with two
other bHLH proteins (Yuan et al. 2008) and is iron re-
sponsive. Interestingly, two TFs of the bHLH family in
Arabidopsis are involved in the iron deficiency induced
synthesis and excretion of riboflavin when heterologous
expressed in tobacco and sunflower (Vorwieger et al
2007). This example underlines that TFs are essential
components in the regulatory pathway connecting per-
ception of iron deficiency and cellular reactions. Recent
results provided evidence for another set of transcription
factors called POPEYE network (Long et al. 2010).
POPEYE (PYE) is a recently identified bHLH transcription
factor, the other player is the putative E3-ubiquitin ligase
called BRUTUS (BRS). Both are induced by iron deficiency
in roots. The importance of this network was revealed
using the pye-1 mutant which suffered from chlorosis and
poor root growth under iron starvation.

Nevertheless, TFs are although induced by other heavy
metals. These TFs can be involved in other cellular pro-
cesses and therefore may interfere with them. For instance,
ethylene-responsive element-binding factor (ERF) gene
expression was detected A. thaliana and A. halleri after
cadmium treatment (Weber et al. 2006). Dehydration-
responsive element-binding protein (DREB) TFs can be ei-
ther up- or down-regulated by heavy metals like cadmium
and copper (Ogawa et al. 2009; Ban et al. 2011). Genes en-
coding TFs belonging to bZIP, Myb, and zinc-finger protein
families are up-regulated by cadmium exposure found by
(Fusco et al. 2005), recently. The regulation of TFs plays an
important role in maintaining metal-hyperaccumulating
abilities. (van de Mortel et al. 2006) revealed that 131 TFs
showed a more than 5-fold higher expression in 7. caeru-
lescens compared to A. thaliana under zinc sufficient con-
ditions. As the terms of the discussed TFs suggested they
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were discovered as cellular responses after various stresses.
This strengthens the idea of common response mecha-
nisms different against biotic and abiotic threats.

Redox signaling induced by heavy metals

As it was discussed in a previous chapter heavy metal ex-
posure can cause imbalances in the cellular redox homeo-
stasis either by being itself redox-active or by replacing
other metal ions (sometimes even redox-active ions) in bio-
molecules. A recently discussed issue in animal cells is the
zinc coordination with sulphur donors of cysteine resulting
in a redox switch with reversible oxidoreduction of the sul-
fur donor linked to zinc association and dissociation (Maret
2012). This phenomenon might be adopted in plant cells
too and bridges the gap between coordination chemistry of
metal ions in biomolecules and their resultant function.

A fundamental role in signaling is fulfilled by the gener-
ated reactive oxygen species (ROS) which can activate
mitogen-activated protein kinase (MAPK) cascades in a
plant species and metal dependent manner (Gupta and
Luan 2003, Rentel et al. 2004). As an example, (Liu et al.
2010) demonstrated an activation of MPK3 and MPK®6 via
accumulation of ROS in Arabidopsis. These cascades end
up by phosphorylation of transcription factors (see Cellular
secondary signal molecules) interacting with gene pro-
moters and thus inducing gene expressions. It should be
noted that there are differences between metal-sensitive
and metal-tolerant plants: ROS-MAPK signals cause sev-
eral cellular damages like interruption of hormonal signal-
ling, programmed cell death in metal-sensitive plants. In
contrast, metal-tolerant plants are able to accumulate repair
proteins such as chitinases and heat shock proteins (HSP).
A more detailed overview provides a recently published re-
view by Lin and Aarts (2012). However, it should keep in
mind that ROS is produced as a response to myriad kinds
of stresses and therefore could interfere with other cellular
reactions. Generation of ROS after heavy metal contact is
mostly an unspecific reaction due to abnormal high metal
concentrations. It is a common phenomenon that excessive
biotic or abiotic threats elicit nondirectional responses.

Other important elements are the soluble redox couples
like glutathione or NAD(H), NADP(H) which provide a
buffering system in the cytoplasm (Noctor 2006). Local
perturbation of this system is likely a step in signal trans-
duction processes inducing e.g. enzyme or hormone activ-
ity. These processes occur in all cellular compartments
reflecting their physiological importance. Comprehensive
reviews concerning this sophisticated network can be
found in Foyer and Noctor (2005a,b), Grene (2002) and
(Ahmad et al. 2008).

Conclusion and further perspective
Almost all plants exhibit a basal metal tolerance when
facing heavy metals. Some species are even capable of
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hyperaccumulation running different tolerance reactions
compared with nonaccumulating plants. However, gen-
eral tolerance mechanisms are based on exclusion, che-
lation and sequestration processes (Figure 1).

Attention should be paid on signal transduction path-
ways induced by metals because they use common signal
elements which can be also elicited by other environmen-
tal stresses. The critical evaluation of triggered signals and
their responses is mandatory for understanding metal
homeostasis. The challenge in the future will be the inves-
tigation of multiple stress factors as it occurs under real
environmental conditions.

Special focus should put on low, environmentally rele-
vant heavy metal concentrations. Therefore, the further
development of sensitive detection methods and the com-
bination of different approaches are necessary. These tools
enable for instance new insights in the metalloproteome
and its interactions (“metallomics”). Further knowledge
about metal tolerance in plants is mandatory for several
purposes:

(1) Predictions about health risk which is caused by
metal accumulation in crop plants failing visible
symptoms of phytotoxicity.

(2) Generation of genetically engineered plants having
an enhanced accumulation of metals valuable for
nutritional purposes (biofortification).

(3) Clean up of metal contaminated soils
(phytoremediation) and mining of rare metals which
are accumulated in plant tissues (phytomining).
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