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Abstract

Background: Symphoricarpos, a genus of the Caprifoliaceae family, consists of about 15 species of clonal deciduous
shrubs in North America and 1 species endemic to China. In North American tallgrass prairie, Symphoricarpos
orbiculatus (buckbrush) is the dominant shrub often forming large colonies via sexual and asexual reproductive
mechanisms. Symphoricarpos shrubs, in particular S. orbiculatus, use a unique sexual reproductive mechanism
known as layering where vertical stems droop and the tips root upon contact with the soil. Because of conflicting
societal values of S. orbiculatus for conservation and agriculture and the current attempt to restore historical fire
regimes, there is a need for basic research on the biological response of S. orbiculatus to anthropogenic burning
regimes.

Results: From 2007 through 2013 we applied prescribed fires in the late dormant season on grazed pastures in the
Grand River Grasslands of Iowa. From 2011 to 2013, we measured how S. orbiculatus basal resprouting and layering
stems were affected by patchy fires on grazed pastures, complete pasture fires on grazed pastures or fire exclusion
without grazing for more than three years. We measured ramet height, ramet canopy diameter, stems per ramet,
ramets per 100 m2, and probability of new layering stems 120 days after fire. Height in burned plots was lower than
unburned plots but S. orbiculatus reached ~ 84% of pre-burn height 120 days after fire. Stems per ramet were 2x
greater in the most recently burned plots due to basal re-sprouting. Canopy diameter and density of ramets was
not affected by time since fire, but burned pastures had marginally lower densities than plots excluded from fire
(P = 0.07). Fire triggered new layering stems and no new layering stems were found in plots excluded from fire.

Conclusions: The mechanisms of both basal sprouting and aerial layering after fire suggest S. orbiculatus is tolerant
to dormant season fires. Furthermore, dormant season fires, regardless if they were patchy fires or complete pasture
fires, did not result in mortality of S. orbiculatus. Dormant season fires can reduce S. orbiculatus structural
dominance and maintain lower ramet densities but also trigger basal resprouting and layering.
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Background
Global vegetation distribution patterns are largely driven
by climatic constraints and disturbance regimes (Clark
1991; Collins 2000). Grasslands on several continents were
regulated by the developmental disturbances of fire, large
ungulate grazing, and the synergistic interaction of the
two (Fuhlendorf and Engle 2001). The vegetation compos-
ition of these fire prone grasslands includes shrubby
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angiosperm species that persist after fire due to vegetative
regeneration mechanisms rather than recruitment (Bond
and Midgley 2003). In North America, conversion to
cropland and suppression of fire has rendered tallgrass
prairies as one of the most threatened ecosystems globally
(Sampson and Knopf 1994). Prior to European settlement,
tallgrass prairie was prone to burning every three to five
years (Collins 2000). Consequently, the exclusion of regu-
lar fire in the remaining tallgrass prairie alters plant suc-
cession toward a shrub dominated community and shrub
encroachment is a global issue (Collins and Adams 1983;
Collins 1992; Shortt and Vamosi 2012).
n Open Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
roperly credited.

mailto:jscasta@uwyo.edu
http://creativecommons.org/licenses/by/4.0


Scasta et al. Botanical Studies  (2014) 55:80 Page 2 of 10
Shrubs in these fire prone ecosystems utilize a resprout-
ing life strategy that results in tradeoffs between growth
and reproduction because resprouting shrubs often have
smaller seeds, poor reproduction from seeds, and short-
lived seed banks (Bond and Wilgen 1996; Kruger et al.
1997). The cost of energy allocation belowground to sur-
vive fire also reduces growth rate (Bond and van Wilgen
1996). Subsequently, form follows function, and resprout-
ing species typical of disturbance prone ecosystems are
multi-stemmed and short statured to optimize rapid re-
covery. In contrast, recruiting species are typically single-
stemmed and taller, an advantage for the competition for
light and dispersion of seed (Bellingham and Sparrow
2000; Bond and Midgley 2003). Researchers have focused
more on seedling ecology than resprouting mechanisms as
a plant life history trait, although neither regeneration
strategy is mutually exclusive (Olson and Platt 1995;
Higgins et al. 2000; Bond and Midgley 2003). Further-
more, basal resprouting mechanisms are not uniform
within a functional group type (i.e., not all shrubs resprout
basally or epicormically) or even within genera and are
less understood than seedling recruitment (Enright and
Goldblum 1999; Bellingham and Sparrow 2000; Ansley
and Rasmussen 2005; Winter et al. 2011).
Symphoricarpos is a genus of the honeysuckle or

Caprifoliaceae family, consisting of about 15 species of
clonal deciduous shrubs in North America and 1 species
endemic to China (S. sinensis) (Theis et al. 2008). In
North America, Symphoricarpos is one of the most
broadly distributed shrub genera, and S. orbiculatus has
been described as the dominant shrub of the tallgrass
prairie (Holechek et al. 2001; USDA Plant Database
2013; Scasta 2014). Asexual spread is from rhizomes and
rooting of aerial stems (henceforth layering) and sexual
spread is from seeds (Pelton 1953; Hullick and Manske
2006; Nesmith et al. 2006). Layering occurs when verti-
cal stems droop horizontally and produce adventitious
roots when they come into contact with the soil. While
the layering mechanism has been studied from a phys-
ical disturbance standpoint, it has been largely neglected
in the fire ecology literature (Hartmann and Kester 1975;
Deb and Pogener 2012). Furthermore, S. orbiculatus has
been characterized as a major invader of unburned
prairie but the role of fire exclusion and the application
of fire with livestock grazing are not well understood for
this species (Bragg and Hulbert 1974; Stubbendieck et al.
2003). However, because S. orbiculatus is important for a
wide range of wildlife species, there are conflicting views
on the necessity and desirability of reducing S. orbiculatus
(Korschgen 1962; Guthrey 1980; Brennan 1991; Soper
et al. 1993; Harrell et al. 2001; Stubbendieck et al. 2003).
Quantifying S. orbiculatus reproductive mechanisms after

fire will yield basic biological insights to assist managers in
appropriately applying disturbance regimes and potentially
develop alternative strategies to mitigate encroachment.
Our objectives were to assess how S. orbiculatus vegetative
regeneration and reproduction is affected by fire exclusion
and late dormant-season fire applied every third year across
entire grazed pastures or applied annually on a third of a
grazed pasture. Prescribed burning in the late dormant sea-
son is the prescribed fire season most common in North
American grasslands and is limited to after snow melt and
before vegetation greenup. We hypothesized that S. orbicu-
latus is tolerant to dormant season burning and that the re-
productive mechanisms of basal sprouting and aerial
layering would be dependent on time since fire and serve
as the key mechanisms of tolerance. To test our hypothesis
we quantified vegetative response to prescribed fire by
measuring ramet height, ramet canopy diameter, stems per
ramet, ramets per 100 m2, and probability of new layering
stems.

Methods
Study location and design
The study was conducted from 2011–2013 in tallgrass
prairie in Ringgold County, Iowa in the Grand River
Grasslands (GRG) of Iowa, USA (40°34’N, 94°10’W). The
GRG is in the glaciated plains of the Central Tallgrass
Prairie Ecoregion and has been described as one of the
premier places to restore a functioning tallgrass prairie
ecosystem (Missouri Department of Conservation 2010).
Annual precipitation was 968 mm in 2011 (+97 mm above
long-term mean), 798 mm in 2012 (− 73 mm below long-
term mean), 874 mm in 2013 (+3 mm above long-term
mean and averaged 870 mm during the three year study
(+1 mm above long-term mean) (Iowa Environmental
Mesonet 2014). Soils are loess hills with glacial till side
slopes with slopes in some areas exceeding 9%. Subsoils
have high clay content ranging from 42 to 48% and native
vegetation was tallgrass prairie (USDA NRCS 2013). Herb-
aceous vegetation across all study pastures was dominated
by perennial C4 graminoids (Andropogon gerardii (big
bluestem), Schizacyrium scoparium (little bluestem), and
Sorghastrum nutans (Indiangrass) with a component of
exotic C3 graminoids and legumes (Schedonorus arundi-
nacea (tall fescue), Bromus inermis (smooth brome), Lotus
corniculatus (birdsfoot trefoil), and Trifolium spp. (clover).
In these study pastures, S. orbiculatus was the most com-
mon shrub regardless of the spatial scale of assessment
and occurred more often than any other shrub species in-
cluding Rhus glabra (smooth sumac), Rosa multiflora
(multiflora rose), Cornus drummondii (dogwood), Prunus
spp. (plum) and Rubus spp. (raspberry) (Scasta 2014).

Fire effects sampling
Three treatments were applied and assessed: 1) Patch-burn
grazing (PBG) or burning one-third of a pasture annu-
ally (the patch) with cattle having full access to the
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pasture, 2) Graze and burn (GAB) or burning pastures
completely every three years with cattle having full access
to the pasture, and 3) Unburned or no fire for over three
years and no cattle grazing during that period. Grazing
was seasonal from late-April to October with mature
Angus cows. Mean (± SE) size of each pasture was 27 ±
3 ha and mean (± SE) stocking rate was 2.3 ± 0.2 AUM
ha−1. All prescribed fires were conducted within a four
week window in the late dormant season (March 8 to
April 4) prior to the emergence of S. orbiculatus leaves.
Mean fire weather data for the available fires was 47% rela-
tive humidity, 9 km per hr, and 18°C. The fire and grazing
treatments were in place prior to the initiation of sampling
in 2011, so all patches and pastures had a consistent
elapsed time since fire (0.3, 1, 2 years since fire) (Table 1).
The designation of 0.3 years since fire indicates that sam-
ples were measured four months after fire. We had less
control over the unburned treatments and elapsed time
since fire for those pastures was more than three years but
Table 1 Schedule of prescribed fire and measurements of Sym
USA, 2007-2013

Year

Treatment 2007 2008 2009

Patch-burn grazed pastures (3 pastures total delineated into 3 patches

Pyland North

Patch A fire - -

Patch B - fire -

Patch C - - fire

Pyland South

Patch A fire - fire*

Patch B - fire fire*

Patch C - - fire

Ringgold South

Patch A fire - -

Patch B - fire -

Patch C - - fire

Graze-and-burn pastures (3 pastures total)

Gilleland - - fire

Lee Trail - - fire

Pyland West - - fire

Unburned pastures (3 pastures total)

Hog Farm - - -

Kellerton South - - -

Richardson West - - -

Fire: − = no fire; fire = prescribed fire; fire* = escaped out of the intended burn patch an
unburned treatment and when we returned in 2013 to measure a second assessment o
Measurements: m1 = Symphoricarpos orbiculatus maximum ramet height, ramet maxim
arising from the same root crown; m2 = new aerial layering stems.
Treatments: Patch-burn grazing (PBG) where one-third of a pasture (the patch) is burn
entire pasture is burned every third year (2012 was the burn year) and cattle have full
Treatments were in place starting in 2007 so all patches and pastures had a consisten
the exact number of years is unknown. When we returned
in 2013 to conduct a second assessment of unburned pas-
tures, they had all either been burned or mowed so no fol-
low up measurements were possible.
Fire effects measurements were conducted from 2011 to

2013 in six plots per pasture controlling for catena and
soil type (Debinski et al. 2011). Plots were all permanent
and ranged from 16 m2 (16 m × 1 m) to 350 m2 (25 m ×
14 m). Plots were variable in size due to the variable dens-
ity of S. orbiculatus ramets. If S. orbiculatus was not
present within a permanent plot, we assessed 25 m north
or south of the permanent marking pins for S. orbiculatus
presence. Three additional pastures that had not been
burned in more than three years were included for fire ef-
fects measurements and had three plots per pasture
(Table 1). Thus, to ensure adequate sample size and in the
sake of time, we sampled plots for a minimum of ten ra-
mets to a maximum of fifty ramets in each plot. Given the
clonal nature of S. orbiculatus and the intermingling of
phoricarpos orbiculatus in the Grand River Grasslands,

2010 2011 2012 2013

per pasture)

fire -, m1, m2 -, m1 fire, m1, m2

- fire, m1, m2 -, m1 -, m1, m2

- -, m1, m2 fire, m1 -, m1, m2

fire -, m1, m2 -, m1 fire, m1, m2

- fire, m1, m2 -, m1 -, m1, m2

- -, m1, m2 fire, m1 -, m1, m2

fire -, m1, m2 -, m1 fire, m1, m2

- fire, m1, m2 -, m1 -, m1, m2

- -, m1, m2 fire, m1 -, m1, m2

- -, m1 fire, m1 -, m1

- -, m1 fire, m1 -, m1

- -, m1 fire, m1 -, m1

- -, m1, m2 - -, d

- -, m1, m2 - -, d

- -, m1, m2 - -, d

d burned remainder of pasture; d = disrupted (we had less control over the
f unburned pastures, they had all either been burned or mowed). (d = disrupted).
um canopy diameter, stems per ramet measured as number of vertical live stems

ed and cattle have full access to the pasture, Graze and burn (GAB) where the
access to the pasture, and Not burned for more than three years with no grazing.
t elapsed time since fire (0.3, 1, 2 years since fire).
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lateral vegetative structures among adjacent clones, it was
not possible to distinguish individual clones (aka, genets).
Therefore, we conducted measurements at the ramet level.
We define ramets as individual plants or clonal fragments
in the colony that are rooted and may have originated from
either seed or rooted nodes from aerial layering stems that
may or may not be connected to other ramets (Nesmith
et al. 2006) (Figure 1). Ramet measurements were con-
ducted approximately 120 days after fire. Maximum height
of the ramet was measured as the tallest individual stem of
a ramet. Maximum canopy diameter was measured as the
longest horizontal axis of a ramet. Stems per ramet was
measured as the total number of vertical live stems arising
from the same root crown and is a reflection of the regen-
eration from basal resprouts. Ramets per 100 m2 were mea-
sured by noting the total number of ramets in a plot and
then converting that to 100 m2, a reflection of alterations to
ramet density from fire-induced mortality. New aerial layer-
ing stems were measured as vertical stems arising from the
root crown but having a horizontal orientation but not yet
rooting at the tip (Figure 1). All measurements for fire ef-
fects were conducted in 2011, 2012 and 2013 except pres-
ence/absence of new layering stems (Table 1). New layering
stems were only identified in 2011 and 2013 in the PBG
pastures and in unburned pastures in 2011 only (Table 1).

Analysis
To assess the response of S. orbiculatus to prescribed fires
we used maximum ramet height, maximum ramet canopy
Figure 1 Diagram of fire effects measurements given the clonal
nature of S. orbiculatus. We conducted measurements at the
ramet level and define ramets as individual plants or clonal
fragments in the colony that are rooted and may or may not be
connected to other ramets by rhizomes or rooted aerial layering
stems. Individual ramets were identified by spatial independence
based on vertical stems arising from the same root crown. New
aerial layering stems were measured as vertical stems arising from
the root crown, having a horizontal orientation, and not yet rooting
at the tip.
diameter and number of live stems per ramet, and density
of ramets per 100 m2 as response variables. We used plot
as a random effect because the plot design accounts for
the highly variable topoedaphic features across the land-
scape, variable disturbance history associated with tillage
and over grazing within and across pastures, and soil types.
We also used year as a random effect because 2012 was
the hottest year since 1895 (for both the mean annual high
temperature and the March to May high temperature) and
was the 5th driest year since 1895 (based on Palmer’s
Drought Severity Index (PDSI) but 2013 was one of the
wettest years since 1895 (the 81st driest year based on
PDSI) (NOAA 2014; Wang et al. 2014). We used mixed ef-
fects models (proc mixed) using the residual maximum
likelihood estimation method with treatment, elapsed time
since fire and the interaction between treatment and
elapsed time since fire as fixed effects (SAS Institute 2011).
Covariance parameter estimates for each random effect
were calculated and fixed effects assessed for significance
(α 0.05). We then conducted post hoc least squares test
for all pairwise comparisons of all combinations for fixed
effects at the 95% confidence level. Binary presence/
absence data of horizontal layering stems data were used
to determine odds ratios (odds = eβx) for the presence/
absence probability of layering stems related to elapsed
time since fire. The logit function in proc genmod was
used to model probability, assess goodness of fit and deter-
mine parameter estimate for time since fire (SAS Institute
2011).

Results
Ramet height on burned pastures, regardless of how fire
was applied (henceforth, whether fire was applied PBG
or GAB), was significantly lower (F2,66 = 5.47; P < 0.01)
than pastures managed without fire. Ultimately, the
lower ramet height on burned pastures is largely a func-
tion of elapsed time since fire rather than how fire was
applied because time since fire was positively correlated
with ramet height (F3,64 = 23.66; P < 0.01) and the two
burned treatments did not differ (P = 0.32) (Figure 2A).
The tallest S. orbiculatus ramets measured were 114 cm
and were found in unburned pastures or GAB pastures
2 years after fire. Four months after fire, ramet height
had reached ~ 84% of its pre-fire height, regardless of
how fire was applied.
Ramet canopy diameter did not differ between the

three treatments (F2,66 = 0.09; P = 0.92) (Figure 2B).
However, the interaction between treatment and elapsed
time since fire was significant (F6,62 = 4.74; P < 0.01) as
canopy diameter within PBG and GAB treatments, re-
spectively, was lower at 0.3 years after fire than 1 or 2 years
after fire (Figure 2B). The greatest ramet canopy diameter
measured was 143 cm and was in a GAB pasture 2 years
after fire.



Figure 2 Mean± SE of ramet height (A), ramet canopy diameter (B), stems per ramet (C), and ramets per 100 m2 (D) for Symphoricarpos
orbiculatus plants exposed to three fire treatments in the Grand River Grasslands of Iowa, USA, 2011–2013. Treatments are 1) Patch-burn
grazing (PBG) where one-third of a pasture (the patch) is burned and cattle have full access to the pasture, 2) Graze and burn (GAB) where the entire
pasture is burned every third year (2012 was the burn year) and cattle have full access to the pasture, 3) Unburned for greater than three years with
no grazing. The asterisk indicates if the unburned treatment is significantly different (P≤ 0.05) than the burned treatments and all elapsed time since fire
categories (0.3, 1 or 2 years after fire). Letters indicate significant differences within a treatment (P≤ 0.05) (lower case for PBG and capitalized for GAB)
based on a mixed effects model.
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Ramets in the most recently burned patches in PBG pas-
tures had 2.6 times more stems, and ramets in GAB pas-
tures the year it was burned had 2.2 times more stems
than pastures not burned in over 3 years. The number of
stems per ramet on burned pastures, regardless of
how fire was applied, was significantly higher (F2,66 =
6.39; P < 0.01) than pastures not burned in over 3 years
(Figure 2C). Elapsed time since fire was negatively corre-
lated with stems per ramet (F3,64 = 17.79; P < 0.01) and the
two burned treatments did not differ (P = 0.30) (Figure 2C).
Thus, the relationship between number of stems per ra-
met and fire is largely a function of elapsed time since fire
rather than how fire was applied.
Ramets per 100 m2 did not differ between the three

treatments (F2,66 = 0.03; P = 0.30). However, the interaction
between treatment and elapsed time since fire was mar-
ginally significant (F6, 62 = 2.04; P = 0.07) with PBG and
GAB treatments displaying consistently lower densities
than unburned pastures (Figure 2D). There was no appar-
ent mortality in recently burned PBG patches or when
complete GAB pastures were burned (Figure 2D).
Using logistic regression of the binomial presence/

absence of new layering stems, the parameter estimate
for elapsed time since fire was −1.3 and was significant
(P < 0.01) (Table 2). Based on the exponentiation of the par-
ameter estimate, the odds of having a layering stem present
in a plot improve 3.77 times for every year closer to the
burn year. Therefore, 83% of the most recently burned
patches had layering stems present with a steady decrease
as time since fire elapsed. Pastures not burned in over
3 years had no new layering stems (P < 0.01) (Figure 3A).
In a similar fashion, as time since fire elapsed, the den-
sity of layering stems per 100 m2 declines (P < 0.01)
(Figure 3B).



Table 2 Maximum likelihood estimates for time since fire
and probability of new Symphoricarpos orbiculatus
layering stems

Parameter Estimate Standard Likelihood ratio 95% P value

Error Confidence limits

Intercept 3.420 1.077 1.537 5.858 0.002

Time Since Fire −1.330 0.403 −2.235 −0.622 0.001

Maximum likelihood parameter estimates for time since fire and probability of the
presence of new aerial layering stems based on the logit function and binomial
presence/absence data. Based on the exponentiation of the parameter estimate,
the odds of having a layering stem present improve 3.77x for every year closer to
the burn year.

Figure 3 Effect of elapsed time since fire on new Symphoricarpos
orbiculatus horizontal layering stems based on percent of plots
with new layering stems (A), and new layering stem density (B) in
the unburned pastures and the Patch-burn grazed (PBG) pastures
in in the Grand River Grasslands of Iowa, USA, 2011 and 2013.
Letters indicate differences (P≤ 0.05) based on a mixed effects model.
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Discussion
Our study examining the regeneration and reproduction
of S. orbiculatus after fire indicates that this shrub is tol-
erant of low-intensity prescribed fires conducted in the
late dormant season or early spring prior to emergence
of leaves. S. orbiculatus rapidly regenerated from basal
resprouts, recovering to ~ 84% of its pre-fire height
120 days after fire with no apparent mortality. S. orbicu-
latus used both basal resprouting and aerial layering as
reproduction strategies to recover after the disturbance
of fire. Ramet height increased with time since fire, but
stems per ramet and aerial layering probability decreased
with time since fire. Initially, fire physically altered shrub
structure as measured by ramet height and stems per ra-
met. However, the initial structural change was only
temporary as the trend indicated that as time elapses
past four years, physical shrub structure becomes similar
to unburned pastures, similar to Artemisia filifolia (sand
sagebrush) (Winter et al. 2011).
The rapid structural regeneration of S. orbiculatus

within the burn-year growing season is similar to other
species that display rapid regrowth the first year with a
declining rate of growth in the next three to four years
(Gratani and Amadori 1991). The rate of recovery for S.
orbiculatus was slower than Prosopis glandulosa (mes-
quite) that recovered to pre-burn heights within one
year after fire (Drewa 2003). A similar study in tallgrass
prairie suggested that R. glabra rapidly recovers to its
pre-burn height and fire can result in greater plant
heights than in unburned areas for both P. glandulosa
and R. glabra (Drewa 2003; Hajny et al. 2011). However,
fire did not appear to increase S. orbiculatus height in
our study. In more arid environments with coarse sandy
soils, A. filifolia and Quercus havardii (sand shinnery
oak) recovered to only ~ 55% of pre-burn height within
the first year of a burn (Harrell et al. 2001; Winter et al.
2011). However, S. orbiculatus is similar to A. filifolia
and Q. havardii because it took three years or more for
all three species to recover to pre-burn heights. Consid-
ering these variable responses, fire only altered the phys-
ical structure of these fire-tolerant shrubs for a relatively
short period, typically less than four years, and these
shrubs regenerated at different rates depending on cli-
mate and soil limitations (Olson and Platt 1995; Iwasa
and Kubo 1997).
Because S. orbiculatus seeds have little to no potential to

form a long lived soil seed bank (Hidayata et al. 2001) and
the rapid regeneration after fire reported herein, vegetative
regeneration appears to be the primary recovery mechan-
ism of S. orbiculatus to dormant season prescribed fires.
In context, the tallgrass prairie is a disturbance driven eco-
system that historically had a fire return interval of three
to five years (Collins 2000). The life history tradeoff
between resprouting and seedling recruitment is largely
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determined by disturbance regimes and tallgrass prairie
was historically disturbed regularly by fire (Wells 1969;
Bellingham and Sparrow 2000; Collins 2000). Episodic
resprouting events triggered by fire are followed by ex-
tended periods of self-thinning as indicated by the rela-
tionship with elapsing time since fire and declining stems
per ramet in our study (Clark 1991; Hodgkinson 1998).
The low growing and multi-stemmed architecture of

S. orbiculatus is also reflective of the disturbance regime
of tallgrass prairie and its ability to rapidly recover after
fire (Midgley 1996; Bellingham and Sparrow 2000).
However, vegetative reproduction of S. orbiculatus after
fire is not limited to basal resprouting regeneration but
also appears to include aerial layering. The initiation of
aerial layering has also been reported to be triggered by
physical disturbances for Rubus trivialis (dewberries)
from grazing, for Oplopana horridus (devil’s club) from
recent logging activity, and for Cercocarpus spp. (moun-
tain mahogany) from grazing and possibly fire (Miller
1964; Abrahamson 1975; Lantz and Antos 2002). The
absence of cattle grazing activity as a source of physical
disturbance in the unburned pastures could also help ex-
plain the lack of new S. orbiculatus layering stems
(Abrahamson 1975). In the Douglas-Fir forests of Oregon,
USA, burning did not increase aerial layering but did in-
crease basal resprouting of Acer circinatum (vine maple)
while the physical disturbance of thinning and falling
branches stimulated layering (O’Dea et al. 1995). However,
in this old growth forest ecosystem the historic fire return
interval is estimated to be 230 years compared to our study
area that burned every three to five years (Agee 1993).
Our results quantifying the ability of S. orbiculatus to re-

generate after low-intensity prescribed fires conducted in
the late dormant season or early spring is similar to other
Symphoricarpos species, although not every species is
noted to be tolerant of fire. S. occidentalis (western snow-
berry) and S. albus (common snowberry) are highly toler-
ant to fire due to vegetative regeneration mechanisms
(Mclean 1969; Anderson and Bailey 1979; Morgan and
Neuenschwander 1988; Romo et al. 1993; Youngblood
et al. 2006; Hauser 2007). In contrast, S. oreophilus
(mountain snowberry), S. longiflorus (longflower snow-
berry), and S. mollis (creeping snowberry) have been re-
ported to be only low to moderately resilient to fire
(Bartos and Mueggler 1982; Snyder 1991; Aleksoff 1999;
McWilliams 2000; McWilliams 2005; Knapp et al. 2006;
Rocca 2009). Interestingly, even if a species is not highly
tolerant of fire, it still may be fire dependent as S. oreophilus
occurred only on burned sites (Poreda and Wullstein
1994). This variable response to fire within the genus is
attributed to species distributions and biogeographic
disturbance patterns because disturbance frequency is a
major determinant of resprouting strength (Westman and
O’Leary 1986; USDA Plant Database 2013).
In contrast to our study, other studies have reported
reductions in S. orbiculatus with fire. Late spring burn-
ing in tallgrass prairie reduced S. orbiculatus due to
lower carbohydrate reserves because plants had already
leafed out (Hulbert 1984) which is different than our
early spring burns and no apparent reductions. Further-
more, two successive years of spring burning in April in
a forested corridor of Kansas reduced S. orbiculatus can-
opy cover from 40% to 9% but did not alter shrub spe-
cies richness (Abrams 1988). Thus, burning later in the
season or burning a site repeatedly for successive years
may result in reductions of S. orbiculatus. However, at
our research sites, most burning is done in the early
spring and may not be possible in late spring due to
Schedonorus arundinaceus (tall fescue) greenup and al-
teration of fire behavior (McGranahan et al. 2012). Fur-
thermore, it can be difficult to graze and burn complete
pastures for successive years (Ansley et al. 2010).
Woody plant encroachment in mesic grasslands was

regulated by fire (Pyne 1997; Briggs et al. 2005). However,
fire has largely been removed from the landscape or is
only applied in a short seasonal window in the late-
dormant season leading to the need for herbicide treat-
ments (Smith 1977; Defelice 1991; Stubbendieck et al.
2003). It is important to consider that historically wildland
fire seasonality, intensity and frequency may have been
very different than conventional applications of prescribed
fire. Our study suggests that a three-year fire return inter-
val using dormant season prescribed fires does not result
in plant mortality but can result in altered physical struc-
ture and could maintain lower densities of S. orbiculatus.
While our study did not document mortality, this is a
common result for resprouting shrubs (Canadell et al.
1991; Olson and Platt 1995). However, we did document
lower densities on pastures managed with regular fire
compared to higher densities on pastures managed with
long-term fire exclusion but the stimulation of aerial layer-
ing by fire could theoretically increase density. This
contradiction needs additional research across greater
temporal scales. Furthermore, unlike other shrub species
such as R. glabra that may increase with fire, S. orbiculatus
density and expansion appears to be hindered by regular
fire but further research is needed on other seasonal appli-
cations and intensities of fire (Hajny et al. 2011).
Our study also included the spatio-temporal applica-

tion of patchy fires (PBG) and cattle grazing, an attempt
to recouple pre-settlement fire and grazing processes
(Burrows 1991; Fuhlendorf and Engle 2001). The attrac-
tion to recently burned patches alters grazing patterns and
results in fuel accumulation in long-unburned patches and
potentially enhances fire behavior (Kerby et al. 2007).
However, when compared to attempting to burn a pasture
completely, we did not observe different vegetative re-
sponses associated with fire intensity or herbivory. This is
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not surprising because S. orbiculatus is an extremely
effective resprouter after fire and cattle do not graze S.
orbiculatus (Stubbendieck et al. 2003).

Conclusion
Our documentation of fire triggering aerial layering of S.
orbiculatus is a new insight relevant to fire-prone mesic
grasslands. Other studies have documented physical sti-
mulation of aerial layering for other species in less fire-
prone ecosystems or for horticultural purposes (Hartmann
and Kester 1975; O’Dea et al. 1995; Lantz and Antos 2002;
Deb and Pogener 2012). As woody plants continue to en-
croach and transition these critical areas for conservation
from grasslands to shrublands, it is increasingly critical
that we continue to understand the organismal commu-
nities and ecological drivers (Samson 2004; Briggs et al.
2005; Zhang and Zhang 2007). We suggest that aerial
layering be considered as an adaptation to fire distur-
bances and that additional research is warranted. Areas
for additional inquiry include how aerial layering and seed
production of S. orbiculatus fluctuate along a gradient of
disturbance and how fire intensity and fire return interval
affect belowground total non-structural carbohydrate re-
serves because modern anthropogenic fire regimes may
not replicate a natural lighting-ignited fire regime (Kennedy
and Potgieter 2003; de Groot and Wein 2004). Finally, it is
also important to understand how this basic plant ecology
information applies to other resprouting shrub species that
use a layering mechanism and how spatially heterogeneous
prescribed burning functions in land management and
conservation (Hodgkinson 1998; Doumas and Koprowski
2012).
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