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Abstract 

APETALA2/ethylene response factor (AP2/ERF) transcription factor (TF) is a superfamily in plant kingdom, which has 
been reported to be involved in regulation of plant growth and development, fruit ripening, defense response, and 
metabolism. As the final response gene in ethylene signaling pathway, AP2/ERF TF could feedback modulate phyto‑
hormone biosynthesis, including ethylene, cytokinin, gibberellin, and abscisic acid. Moreover, AP2/ERF TF also partici‑
pates in response to the signals of auxin, cytokinin, abscisic acid, and jasmonate. Thus, this superfamily is key regulator 
for connecting the phytohormonal signals. In this review, based on the evidence of structural and functional studies, 
we discussed the multiple regulator roles of AP2/ERF TF in angiosperm, and then constructed the network model of 
AP2/ERF TF in response to various phytohormonal signals and regulatory mechanism of the cross‑talk.
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Background
The surperfamily APELATA 2/ethylene response factor 
(AP2/ERF) has been studies in many plants, which have a 
range of 119–200 members (Du et al. 2014; Nakano et al. 
2006; Rao et al. 2015; Zhuang et al. 2008), and have been 
reported in responses to ethylene, stress, metabolic, fruit 
ripening and senescence (Han et al. 2016; Koyama et al. 
2013; Lee et  al. 2012; Li et  al. 2007; Fits and Memelink 
2000; Trujillo et  al. 2008; Zhu et al. 2014). All the time, 
regulatory mechanism of AP2/ERF TF in these fields 
were wide-spread studies by many scientists and their 
research teams, and increasing experimental evidence 
was exploited to elucidate the detailed roles in each field 
(Guo and Ecker 2004; Liu et  al. 2014; Pré et  al. 2008; 
Taketa et al. 2008; Tang et al. 2016; Xiao et al. 2013; Yin 
et al. 2016). Herein, research advance of AP2/ERF TF was 
reviewed in plant, and the doubtful viewpoints were also 
discussed.

Classification and DNA‑binding elements
According to previous reports, the superfamily AP2/ERF 
members contain a common DNA binding domain, AP2 
domain. Based on the difference of this domain in copy 
numbers, AP2/ERF TF could usually be divided into four 
families, AP2, ERF, RAV, and Soloist (Nakano et al. 2006; 
Licausi et  al. 2010a). AP2 members constitute by one 
or additionally taking a tandem repeated AP2 domain 
(Kagaya et  al. 1999; Licausi et  al. 2013). ERF members 
characterize by a single AP2 domain (Nakano et al. 2006; 
Licausi et  al. 2013). RAV members comprise by a con-
sensus sequence elements for both AP2 domain and B3 
domains (Kagaya et  al. 1999; Swaminathan et  al. 2008). 
Soloist family have little members (one or two) that 
also contain a single AP2 domain in all sequenced plant 
genome, but they strongly diverged in gene sequence 
from other AP2/ERF members (Du et  al. 2013; Licausi 
et al. 2010a; Rao et al. 2015; Zhuang et al. 2008). Because 
of ERF family members could bind to two mainly DNA-
binding elements (Hao et  al. 2002; Sakuma et  al. 2002), 
resulting in a novel DREB family is separated from ERF 
family (Du et al. 2013; Rao et al. 2015; Sakuma et al. 2002; 
Zhuang et  al. 2008). Of the DREB and ERF families, all 
the members are further classified into six groups, A1 to 
A6 and B1 to B6, respectively (Sakuma et al. 2002). How-
ever, these twelve groups are re-designated with group I 
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to X, VI-L, and Xb-L or group A to J (Nakano et al. 2006). 
The re-designated classification is employed in horticul-
tural plants, such as Vitis vinifera, Prunus mume, and 
Solanum lycopersicon (Licausi et al. 2010a; Du et al. 2013; 
Pirrello et  al. 2012), whereas the traditionally classifica-
tion is used in other plant species, including Salix arbuti-
folia, Nicotiana tabacum, and Populus trichocarpa (Rao 
et al. 2015; Sasaki et al. 2007; Zhuang et al. 2008).

AP2/ERF proteins have strongly capacity to bind a wide 
range of cis-regulatory elements in promoter of target 
genes (Sasaki et  al. 2007). Of these cis-regulatory ele-
ments, GCC-box (AGCCGCC element) and DRE/CRT 
(dehydrationresponsive element/C-repeat, RCCGCC 
element) are the mainly two DNA-binding elements (De 
Boer et  al. 2011; Fujimoto et  al. 2000; Hao et  al. 1998, 
2002; Oñate-Sánchez et  al. 2007; Wang et  al. 2012). 
Noteworthy, most AP2/ERF proteins can bind GCC-box 
containing promoter, but the activation degree is differ-
ent among members in various groups. For instance, the 
members are weak activators in group A, B and E, neu-
tral in class G and H, and strong in group C, whereas 
that are as repressor in group F (Pirrello et  al. 2012). 
Besides GCC-box and DRE/CRT, the elements diverged 
from these two also belong to cis-regulatory elements, 
which may be in response to different stimuli underly-
ing various stresses (Mizoi et  al. 2012; Shaikhali et  al. 
2008; Welsch et al. 2007). Moreover, ERF protein can also 
bind to VWRE (vascular wounding responsive element, 
GAAAAGAAAATTTC) and CE1 (coupling element, 
CACCG) in tobacco (Sasaki et al. 2007; Wu et al. 2008). 
In addition, few reports reveal that ERF proteins could 
interact directly with a non-GCC element containing 
promoters (Chakravarthy et al. 2003).

Ethylene response
Ethylene is an important phytohorome for plant growth, 
development, senescence, and stress tolerance. Ethylene 
is synthesized by ACS (1-aminocyclopropane-1- carbox-
yla synthase) catalyzing substrate of SAM (S-adenosyl 
methionine) to form ACC (1-aminocyclopropane-1-car-
boxyla acid), and then impel by ACO (1-aminocyclo-
propane-1-carboxyla oxidase). Sequentially, how much 
ethylene produced in plant tissues are positive correlated 
to ACS and ACO activities. The produced ethylene in 
plant tissues is combined with ETR (Ethylene receptor) 
to activate constitutive triple response (CTR), and then 
induce expression of a set of ethylene insensitive (EIN) 
and Ethylene insensitive-like (EIL). The EIN/EIL pro-
teins bind to upstream regions of ERF TFs to promote 
it expressed in tissues (Alexander and Grierson 2002; 
Guo and Ecker 2003; Solano et  al. 1998). However, due 
to GCC-box usually presented in the promoter of ACS 
and ACO in many plants, the expressed ERF genes will 

enhance the activities of the two genes, thereby acceler-
ate ethylene biosynthesis and signal transduction, such as 
LeERF1, AtERF73/HRE1, TERF2/LeERF2, and MaERF9 
(Li et al. 2007; Xiao et al. 2013; Yang et al. 2011; Zhang 
et al. 2009). Besides the positive feedback genes, few ERF 
TFs also represent as repressor of ACS and ACO activi-
ties to prevent ethylene biosynthesis, including AtERF4, 
AtERF11, SlERF6, and MaERF11 (Lee et al. 2012; Li et al. 
2011; Xiao et al. 2013; Yang et al. 2005). In addition, ERF.
B3 has the ability to modulate the transcription levels of 
a subset of other ERF TFs (Liu et al. 2013). Noteworthy, 
this subset contains the aforementioned activators and 
repressors of ethylene biosynthesis and signal pathway 
genes. Thus, AP2/ERF TF is not only in response to eth-
ylene signal transduction, but also can feedback regulate 
ethylene synthesis in plant tissues.

Stress tolerance
Stresses are the negative environment factors around 
plant growth and development. Both abiotic and biotic 
stresses are mediated by multiple transcriptional factors, 
such as NAC, WRKY, MYB, bHLH, bZIP, and ERF (Abe 
et  al. 2003; Li et  al. 2013; Puranik et  al. 2012; Rushton 
et  al. 2010; Singh et  al. 2002; Zhang et  al. 2012a). Most 
studies have found the importance of AP2/ERF TF in 
defense of various stresses. In general, the AP2/ERF 
TFs in response to abiotic stresses are the members of 
DREB family (Licausi et  al. 2013; Sakuma et  al. 2002). 
Such as AtERF98, MsERF8, JcERF011, and CaERFLP1 
that enhance tolerance to salt (Chen et al. 2012; Lee et al. 
2004; Tang et al. 2016; Zhang et al. 2004, 2012b). TERF2/
LeERF2, CBF1, and CBF3 exalt cold and freezing toler-
ances (Novillo et  al. 2007; Tian et  al. 2011; Zhang et  al. 
2010b). Sub1A, SNORKEL1 and SNORKEL2 allow rice 
to adapt to deep water (Fukao et al. 2006, 2011; Hattori 
et al. 2009; Xu et al. 2006). HRE1 and HRE2 improve the 
tolerance of the plant to the hypoxia stress (Licausi et al. 
2010b). OsWR1, JERF1, TERF1, and SHINE are positive 
regulators of resistance to drought (Aharoni et al. 2004; 
Wang et  al. 2012; Zhang et  al. 2005, 2010a). Moreover, 
few of AP2/ERF TFs are involved to modulate at least 
two different abiotic stresses in defense response. For 
example, over-expression of SlERF5 in transgenic tomato 
plants result in high tolerance to drought and salt stress 
(Pan et al. 2012). Over-expression of JERF3 and SodERF3 
improve resistance to drought, osmotic, salt, and freez-
ing stresses in transgenic rice and tobacco (Trujillo et al. 
2008; Wu et al. 2008; Zhang et al. 2010c). Ectopic expres-
sion of DREB2A in Arabidopsis increase endurance to 
drought, stress, and heat stresses (Sakuma et  al. 2006a, 
b).

Unless enhanced tolerance to abiotic stresses, AP2/
ERF TF also are reported to be concerned in raising 
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resistance to biotic stresses. Over-expression of NtERF5 
contributes to high tolerance to Tobacco mosaic virus 
in Nicotiana tabacum (Fischer and Droge-Laser 2004). 
Silence-expression of ORA59 or RAP2.2 results in low 
tolerance to Botrytis cinerea in Arabidopsis thaliana (Pré 
et al. 2008; Zhao et al. 2012). Loss-of-function mutants of 
AtERF2 or AtERF14 are more susceptible against Fusar-
ium oxysporum in Arabidopsis thaliana (McGrath et al. 
2005; Oñate-Sánchez et al. 2007). Exceptionally, AtERF4 
is the negatively genes in regulating Fusarium oxyspo-
rum resistance (McGrath et  al. 2005). Similar to that in 
abiotic stress defense, few of AP2/ERF TFs have the abil-
ity to coordinate two or more biotic stresses in defense 
response. For instance, Over-expression of MtERF1-1 
improves tolerance to Rhizoctonia solani and Phytoph-
thora medicaginis in Medicago roots (Anderson et  al. 
2010). Over-expression of ERF1 in Arabidopsis conferred 
resistance to necrotrophic fungi including B. cinerea and 
Plectosphaerella cucumerina (Berrocal-Lobo et al. 2002). 
The tomato Transcription Factor Pti4 Regulates Defense-
Related Gene Expression for Pseudomonas syringae and 
Erysiphe orontii by combined to GCC Box and Non-GCC 
Box cis Elements (Chakravarthy et al. 2003).

In addition, few AP2/ERF TFs had been reported 
responsible for biotic and abiotic stress, simultaneously. 
A typical example is the positively regulator TaPIE1 that 
raise the defense responses to R. cerealis and freezing 
stresses by activating defense- and stress-related genes 
(Zhu et  al. 2014). Taken together, AP2/ERF TF plays 
very important roles in regulating defense response to all 
kinds of biotic and abiotic stresses.

Plant growth, development, and senescence
The life of plant is cycled through seed germination, 
seedling growth, organ development, and senescence. 
In this cycle, AP2/ERF TF also displays their regulatory 
roles for shaping many architectural traits. In the process 
of seed germination, SlERF2 positively improve tran-
scription level of marker gene, mannanase 2, resulting 
in a stimulation of premature germination, and enhance 
hook formation of darkgrown (Pirrello et  al. 2006). In 
the progression of plant growth and development, AIN-
TEGUMENTA and AINTEGUMENTA-LIKE6 are related 
to flower organ growth and ovule development in Arabi-
dopsis (Elliott et al. 1996; Jofuku et al. 1994; Klucher et al. 
1996; Krizek 2009; Mizukami and Fischer 2000). Rice 
ethylene-response AP2/ERF factor OsEATB restricts 
internode elongation by down-regulating ent-kaurene 
synthase A, leading to a reduction of rice plant height 
and panicle length at maturity (Qi et  al. 2011). In con-
trast, AtERF1, AtDREB1, and TINYT present their abil-
ity in dwarfing plant height (Liu et al. 1998; Solano et al. 
1998; Wilson et al. 1996). Moreover, NtERF3, AtERF4 and 

AtERF8 had been found to be associated with plant aging 
(Koyama et al. 2013). Of these three genes, AtERF4 and 
AtERF8 belonged to class II ERFs in Arabidopsis, which 
can accelerate precocious leaf senescence by targeting the 
EPITHIOSPECIFIER PROTEIN/EPITHIOSPECIFYING 
SENESCENCE REGULATOR gene and regulating the 
expression of many genes related to senescence (Koyama 
et al. 2013). In addition, AP2/ERF TF is involved in regu-
lating metabolite productions, such as chlorophyll, wax 
and cutin. The present evidences show that CitERF13 
is negative regulator for chlorophyll degradation during 
Citrus fruit degreening by directly binding to the Cit-
PPH promoter and enhancing the activity of a metabo-
lite of pheophorbide hydrolase (Yin et al. 2016). AtWIN1, 
AtSHN, and HvNUD could increase an accumulation of 
wax and cutin on the epidermis by regulating a lipid bio-
synthesis pathway (Aharoni et al. 2004; Broun et al. 2004; 
Taketa et  al. 2008). Obviously, the functions of these 
AP2/ERF TFs are distinctly elucidated in these reported 
traits, but the regulatory roles of other members should 
be further explored in unknown properties in future.

Fruit ripening
Fruit is one of important tissues in fruited plants, which 
harbors seed formation, development, and maturity. 
According to respiratory intensity during ripening, fruit 
is divided into climacteric and non-climacteric pheno-
types. The climacteric fruit must release massive ethyl-
ene at ripening, also called ethylene-dependent fruit. On 
the contrary, the non-climacteric fruit is ethylene-inde-
pendent. To date, ethylene-dependent fleshy-fruits are 
the primary materials for studying fruit ripening, such 
as tomato, apple, and banana. In ethylene-dependent 
fruits, ERF, as the final response gene in ethylene sign-
aling pathway, directly regulate fruit ripening by binding 
to the promoters of their downstream genes, includ-
ing ACO, ACS, PG, EXP, and PSY (Han et  al. 2016; Lee 
et al. 2012; Liu et al. 2014). At present, LeERF1, MaERF9, 
MdERF1, and MdERF3 has been reported as the posi-
tive activator (Li et al. 2007, 2016; Wang et al. 2007; Xiao 
et  al. 2013), whereas SlERF6, MaERF11, and MdERF2 
are the negative repressors for fruit ripening (Han et al. 
2016; Lee et  al. 2012). Of these ERFs, MaERF9 and 
MaERF11 could not only regulate the transcription lev-
els of ACO1 and ACS1 by binding to their promoter, but 
also physically interacted with ACO1 (Xiao et  al. 2013). 
Interestingly, MaERF11 also interact with MaHDA1, the 
complex repress expression levels of downstream genes 
targeted by MaERF11 via histone deacetylation (Han 
et al. 2016). Moreover, the regulatory route of ERF genes 
is intricate during fruit ripening. In apple, MdERF2 pre-
sents at least three roads in regulating MdACS expres-
sion. MdERF2 repressor and MdERF3 activator could 



Page 4 of 8Gu et al. Bot Stud  (2017) 58:6 

regulate the transcription level of MdACS by binding to 
their promoter, respectively. Meanwhile, MdERF2 inhibit 
MdERF3 activity by combining to the DRE element 
in the promoter, indirectly suppressed the expression 
level of MdACS. Thirdly, a directly interaction between 
MdERF2 and MdERF3 restrain the binding of MdERF3 
to the MdACS promoter, and then suppress the MdACS 
expressed in fruit flesh (Li et al. 2016). In tomato, SlERF.
B3 has the ability to activate the regulatory network for 
fruit ripening. A dominant repressor version of SlERF.
B3 (SlERF.B3-SRDX) down-regulates ethylene receptor 
levels, but enhances triple response and up-regulated 
the expression levels of EIN3-like gene, contributing to 
an acceleration of fruit ripening (Liu et al. 2013). Further 
study found that SlERF.B3-SRDX could alter the expres-
sion pattern of other ERF family members. Most notably, 
SlERF.B3-SRDX also stimulate the transcription levels of 
ripening regulators, including RIPENING INHIBITOR 
(RIN), NON-RIPENING (NOR), COLORLESS NON-
RIPENING (CNR), and Homeodomain-leucine zipper 
HOMEOBOX (HB-1) (Liu et al. 2014). Therefore, the reg-
ulatory role of AP2/ERF TF is multiple, and their regu-
lated mechanism is very complex during fruit ripening.

Integration of phytohormonal signals
Phytohormones are a group of naturally occurring, 
organic substances which affected plant growth, devel-
opment, and senescence at low concentrations. Of these 
phytohormones, auxin, cytokinin, and gibberellin are 
reported to be involved in regulation of seed germina-
tion and plant growth (Pacifici et al. 2015; Urbanova and 
Leubner-Metzger 2016; Werner et  al. 2001). Ethylene 
plays extremely important roles in climacteric fleshy fruit 
ripening and senescence (Hayama et al. 2006; Xiao et al. 
2013; Yin et  al. 2008), and together with jasmonate and 
abscisic acid, participate in defense response to biotic and 
abiotic stresses (Li et  al. 2011; Lorenzo et  al. 2003; Pré 
et al. 2008). Obviously, cross-talk among these phytohor-
mones must be carried out in plant tissues. This cross-
talk is always surveyed by many scientists, and increasing 
evidences are emerged to elucidate the talk mechanism. 
Ethylene signal transduction is a general pathway during 
the life cycle of plant. As the final response gene in eth-
ylene signaling pathway, AP2/ERF are also documented 
to be involved in response to other hormones. In rice, an 

AP2/ERF TF OsCRL5 is induced by treating with exoge-
nous auxin, and inhibits cytokinin signal transduction by 
enhancing the activities of two repressors (Kitomi et  al. 
2011). Interestingly, several AP2/ERF TFs in subgroup 
B-5 are responsible for exogenous cytokinin, thereby 
designated as cytokinin response factor (Rashotte et  al. 
2006). Also in rice, OsEATB, which is restrained by eth-
ylene and abscisic acid in expression level, negative 
regulate gibberellin biosynthesis by down-regulating a 
pathway gene (Qi et  al. 2011). In Arabidopsis, tobacco 
and tomato, however, few AP2/ERF TFs are shown to 
modulate abscisic acid responses, such as AtERF11 and 
TSRF1 (Li et al. 2011; Zhang et al. 2008). The ethylene-, 
jasmonate-, and abscisic acid-responsive JERF1 regulates 
abscisic acid biosynthesis-related gene in expression level 
(Zhang et al. 2004; Wu et al. 2007). Moreover, NIC2 par-
ticipate in mediating jasmonate-elicited nicotine biosyn-
thesis (De Boer et al. 2011). ORA59, which was induced 
by jasmonate and ethylene in expression level, is the key 
regulator of jasmonate- and ethylene-responsive PLANT 
DEFENSIN 1.2 expression by binding to GCC-box ele-
ment in the promoter (Pré et al. 2008; Zarei et al. 2011). 
AtERF2 is a positive regulator of jasmonate-responsive 
defense genes, while AtERF4 negative adjust jasmonate-
responsive defense gene expression (McGrath et  al. 
2005). Overall, AP2/ERF TF is the key regulator to inte-
grate all kinds of phytohormonal signals.

Conclusions
The AP2/ERF superfamily has hundreds of members in 
various plants, which contains at least one AP2 domain in 
all designated families. Generally, AP2/ERF TF mediates 
downstream responsible genes by binding to the GCC-box 
and/or DREB element in the promoter. Unless responses to 
ethylene signal, a large number of AP2/ERF members are 
stimulated by auxin, cytokinin, abscisic acid, and jasmonate 
signals. Meanwhile, several members also modulate gibber-
ellin, cytokinin, and abscisic acid contents by directly regu-
lating biosynthesis pathway genes of these phytohormones. 
Moreover, the stimulated genes would further regulate 
downstream effectors, resulting in changes of agronomic 
traits, including plant growth, defense responses, and fruit 
ripening (Fig. 1). In summary, AP2/ERF TF presents multi-
ple regulatory roles in angiosperm.
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