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Abstract 

Background: The cropping area of genetically modified (GM) crops has constantly increased since 1996. How‑
ever, currently, cultivating GM crops is associated with many concerns. Transgenes are transferred to non‑GM crops 
through pollen‑mediated gene flow, which causes environmental problems such as superweeds and introgressive 
hybridization. Rapeseed (Brassica napus L.), which has many GM varieties, is one of the most crucial oil crops in the 
world. Hybridization between Brassica species occurs spontaneously. B. rapa grows in fields as a weed and is culti‑
vated as a crop for various purposes. Both B. rapa weeds and crops participate in gene flow among rapeseed. There‑
fore, gene flow risk and the coexistence of these two species should be studied.

Results: In this study, field experiments were conducted at two sites for 4 years to evaluate gene flow risk. In addi‑
tion, zero‑inflated models were used to address the problem of excess zero values and data overdispersion. The dif‑
ference in the number of cross‑pollination (CP) events was nonsignificant between upwind and downwind plots. The 
CP rate decreased as the distance increased. The average CP rates at distances of 0.35 and 12.95 m were 2.78% and 
0.028%, respectively. In our results, zero‑inflated negative binomial models were comprehensively superior to zero‑
inflated Poisson models. The models predicted isolation distances of approximately 1.36 and 0.43 m for the 0.9% and 
3% threshold labeling levels, respectively.

Conclusions: Cultivating GM crops is prohibited in Taiwan; however, the study results can provide a reference for the 
assessment of gene flow risk and the coexistence of these two species in Asian countries establishing policies for GM 
crops.
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Background
The acreage of global genetically modified (GM) crops 
has increased to approximately 191,700,000 ha since 1996 
(ISAAA 2018). The most common GM crops are maize, 
soybean, cotton, and canola. GM crops can be classified 
according to herbicide tolerance (HT), insect resistance, 
stacked traits, virus tolerance, and other traits; HT GM 

crops are the most common. Because of the increasing 
world population, GM crops are considered a solution 
for ensuring the food security of the world population 
(Taheri et al. 2017). For example, HT GM crops can pro-
vide convenient weed control at a relatively low price 
(Brookes and Barfoot 2016). Although GM crops have 
benefits, some issues should be considered. GM crop 
cultivation is associated with several concerns, includ-
ing biodiversity, economics, agricultural production, and 
consumer choice (Smyth et  al. 2002). GM crops affect 
non-GM crops through gene flow and cause the con-
tamination of non-GM crops with transgenes. Therefore, 
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many countries have established a threshold of GM con-
tent among non-GM products. The strictest threshold is 
0.9% in the Regulation (EC) No. 1830/2003 of the Euro-
pean Union (EU). Therefore, the coexistence of GM and 
non-GM crops is an issue that must be discussed.

Rapeseed (Brassica napus L.) is a cross-pollinated 
crop of the Brassica genus that is typically pollinated 
by insects. Bees (Apoidea superfamily) are its main pol-
linator (Scheffler et al. 1995). Although B. napus is typi-
cally pollinated by insects, studies have indicated that 
B. napus can be pollinated without insects (Eisikowitch 
1981). Research on gene flow between non-GM and 
GM B. napus has been conducted in the past few years 
(Beckie et  al. 2003). There is evidence that pollination 
occurs between B. napus and its related species (War-
wick et al. 2003), and the probability of GM genes being 
transferring to related species should be examined. Gene 
flow between B. napus and B. juncea L. was evaluated in 
a previous study (Zhang et  al. 2018a). Studies have also 
reported that spontaneous hybridization is more likely 
to occur between B. napus and Brassica. rapa L. than 
between B. napus and other Brassica crops (Landbo et al. 
1996). A wild B. rape population near a B. napus field 
was revealed to have a hybridization rate of 1.1–17.5% 
(Simard et al. 2006). Furthermore, a study indicated that 
introgression hybridization may have occurred between 
B. napus and B. rapa (Hansen et al. 2001). Hence, the risk 
of gene flow between B. napus and B. rapa is relatively 
higher than that between B. napus and other Brassica 
species.

The most common measure used for determining the 
coexistence of GM and non-GM B. napus is isolation dis-
tance. Models that fit the relationship between the cross-
pollination (CP) rate and isolation distance have been 
developed in previous studies, and the optimal isolation 
distance can be derived from the model with the best 
fit (Funk et  al. 2006; Walklate et  al. 2004; Weekes et  al. 
2005). The pollen dispersal model can be divided into 
empirical and mechanistic models. Because mechanistic 
models are difficult to set up for insect pollination, the B. 
napus pollen dispersal model is classified as an empiri-
cal model (Klein et al. 2006). The variability of data from 
dispersal experiments is typically great (Bensadoun et al. 
2016). Data are overdispersed when the observed vari-
ance is higher than the theoretical variance because of 
the excess zero values in the observed dispersal count 
data. To fit this type of data, the zero-inflated Poisson 
(ZIP) distribution is an appropriate method (Bensadoun 
et al. 2014).

Small farming systems are common in many Asian 
countries. In Taiwan, fields are small and scattered 
(Hsu 2014). An average of 0.3  ha of agricultural land is 
owned by each person among farming families (Council 

of Agriculture 2017). Gene flow in Asian farm systems 
has not been thoroughly studied. Therefore, establish-
ing an optimal field design for GM and non-GM crops to 
coexist would be beneficial for Asian agricultural devel-
opment. Few studies have assessed the coexistence of B. 
napus and B. rapa on a small field scale. In Taiwan, B. 
rapa is cultivated in fields as a green manure, vegetable, 
or honey plant. Therefore, adjacent fields of B. rapa and 
GM B. napus may cause unexpected gene flow between 
these species. This study provides new insights into gene 
flow between non-GM B. rapa and GM B. napus and 
how the wind direction and distance affect gene flow dur-
ing a 4-year experiment. Models that fit the CP rate (%) 
were also developed. This study provides a valuable refer-
ence for researchers and growers interested in preventing 
gene flow in coexisting of non-GM B. rapa and GM B. 
napus.

Materials and methods
Plant materials
Non-GM B. napus “Deza oil No. 18” (AACC, 2n = 38) 
was used as the pollen donor in this study. This cultivar 
has recessive genetic male sterility and is double cross 
variety, and its growth period is approximately 224 days. 
The pollen recipient plant was the open-pollination vari-
ety (Nongxing 80-day) of B. rapa (AA, 2n = 20), which is 
mainly used as a green manure crop in Taiwan. B. napus 
seedlings were treated with vernalization to ensure flow-
ering in Taiwan. B. napus seedlings were cooled to 4  °C 
for at least 30 days. After B. napus vernalization, B. napus 
and B. rapa seedlings were planted in 128-well plastic 
trays in a greenhouse. The seedlings were transplanted to 
a field until the five-leaf stage.

Experiment design
The pollen dispersal experiments were conducted from 
the fall of 2013 to the spring of 2017 at Taiwan Agri-
cultural Research Institute (TARI), Council of Agricul-
ture (COA), Executive Yuan (24° 03′ N, 120° 69′ E), and 
Agricultural Experiment Station (AES), College of Agri-
culture and Natural Resources, National Chung Hsing 
University (24° 07′ N, 120° 71′ E). The experiments were 
replicated eight times, four times for each site. The total 
area of the two experimental sites was approximately 
0.054  ha (36 × 15  m2; Fig.  1; Hong et  al. 2016; Su 2015; 
Wang 2017; Yang 2018).

The two pollen recipient plots were located next to 
the pollen donor plot to simulate adjacent field arrange-
ments in Taiwan (Nieh et  al. 2014). The field design of 
the experiment was established at TARI, where the two 
recipient plots were located on the north and south sides 
of the source plot. At the AES site, the two recipient plots 
were set up on the west and east sides of the source plot. 
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Each experimental field had 12 furrows, and each furrow 
had two rows. There were 696 and 1776 B. napus and 
B. rapa plants in each field, respectively. Blooming was 
controlled through cutting early flowers to assure flower 
synchronization.

Meteorological information was recorded by a weather 
station located at TARI. The daily maximum frequency of 
the wind direction was taken as the field prevailing wind 
direction of each day. The proportion of each wind direc-
tion during the flowering period was defined as the field 
prevailing wind direction.

The recipient plants were sampled in two rows of each 
furrow (except the first and last furrow) at different dis-
tances. The sampling distance was in the range of 0.35–
12.95 m at 0.7-m intervals. One or two flower stalks were 
cut for each plant. Mature pods were dried, threshed, 
and stored for inspecting the hybridization of recipient 
plants.

Hybrid progeny screening
A previous study discovered that the hybrids of B. 
rapa × B. napus could be distinguished from their par-
ents through morphology (Jørgensen and Andersen 1994; 
Lu et  al. 2001; Tu et  al. 2020). The morphology charac-
teristics of B. napus, B. rapa and B. rapa × B. napus (F1) 
were described in Tu et al. (2020). The difference between 
F1 hybrid and parents also showed in the genome size 
and molecular marker (Tu et al. 2020). In this study, leaf 
characteristics were used to differentiate between hybrid 
and nonhybrid progenies at the two-leaf stage. The 
hybrid leaves were circular, dark green, and displayed a 
trichome and strong dentation at the margin (Fig. 2a, b). 

By contrast, the nonhybrid leaves were thin oval shape, 
light green (Fig. 2c, d).

For each sample, 384 seeds were sowed in plastic trays, 
and the number of hybrid progenies was counted. The 
CP rate (%) was calculated by counting the number of 
outcrossing progenies in each seeding sample, as follows 
(Eq. 1):

where nc is the number of hybrid progenies, and N is the 
total seedling number of the sample. Because of model 
fitting requirements, the CP rates were transformed into 
count data by multiplying them by 384 and rounding the 
value.

Zero‑inflated model
According to previous studies, the CP rate decreases with 
increasing distance (Beckie et  al. 2003; Damgaard and 
Kjellsson 2005). Therefore, this may result in a relatively 
large number of zero values in the CP data. Most of mod-
els typically demonstrate poor predictive performance 
when fitted with excess zero values (Rodriguez 2013). 
The zero-inflated model has been proposed to address 
the problem of excess zero-count data (Greene 1994; 
Lambert 1992).

The ZIP model is a model consisting of a fixed zero 
count and a Poisson distribution. The ZIP model 
increases the probability of the occurrence of zero values 
to address excess zero counts. Assume that the probabil-
ity of zero counts is πi, and the response variable Yi, i = 1, 
2, 3…, n, is a counting variable with a probability density 
function (pdf; Eq. 2):

(1)CP (% ) =
nc

N
× 100%

Fig. 1 Field design of experiment sites: a the Taiwan Agricultural Research Institute and b the Agricultural Experiment Station
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where μi is the parameter of the Poisson distribution. The 
parameter μi satisfies the log link function (Eq.  3). We 
defined the predictor of μi as Q × r(x, y). The parameter 
Q and dispersal kernel function r(x, y) were introduced 
in a previous study (Bullock et  al. 2017). Dispersal ker-
nel functions include log-sech, exponential power, power 
law, logistic, 2Dt, gamma, WALD, Weibull, Exponential, 
log-normal, and Gaussian. Variables x and y are the two-
dimensional coordinates. The parameter πi is defined as 
the logit link function (Eq. 4). The predictor for πi is the 
same as that for μi.

(2)

P
(

Yi = yi;µi,πi

)

=

{

πi + (1− πi)e
−µi , yi = 0

(1− πi)
µ
yi
i
yi!

e−µi , yi > 0

(3)µi = exp
(

Q × r
(

x, y
))

(4)πi =
µi

1+ µi

Bias may remain in parameter estimation when the ZIP 
model fits the overdispersed data. Therefore, another 
zero-inflated model, the zero-inflated negative binomial 
(ZINB) model, was suggested to solve this problem. The 
concept of the ZINB model is similar to that of the ZIP 
model. Because the ZINB model adds a parameter to 
evaluate the dispersion of data, it is more suitable for 
overdispersed data. The pdf of the ZINB model is analo-
gous to that of the ZIP model (Eq. 5).

The function ɡ(yi) is the pdf of the negative binomi-
nal distribution, where Γ is the gamma function, and α 
is the shape parameter. The definitions of μi and πi in 

(5)

P
(

Yi = yi;µi,πi

)

=

{

πi + (1− πi) · g
(

yi
)

, yi = 0

(1− πi) · g
(

yi
)

, yi > 0

(6)

g
(

yi
)

=
Γ
(

yi + α−1
)

Γ
(

α−1
)

Γ
(

yi + 1
)

(

1

1+ αµi

)α−1(

αµi

1+ αµi

)yi

Fig. 2 Two‑leaf stage progenies. a Plant of outcrossing progeny. b Leaf shape of outcrossing progeny. c Plant of nonoutcrossing progeny. d Leaf 
shape of nonoutcrossing progeny
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the ZINB model are the same as those in the ZIP model 
(Eqs. 3 and 4).

To apply the two-dimensional function r(x, y), the dis-
tance between individual plants is calculated using Eq. 7. 
The experimental field is considered a two-dimensional 
coordinate plane where plant positions are defined by a 
coordinate point. In Eq. 7, coordinate points (x, y) and (x’, 
y’) define the positions of the recipient and donor plants, 
respectively.

Statistical analysis
We expected that wind would not influence the number 
of CP events. A CP event was defined as the occurrence 
of CP at a sampling point. We compared the number 
of CP events in the two recipient plots by using a z-test 
to evaluate the wind effect. In addition, this study con-
ducted an ANOVA to test the wind effect to the variation 
of CP rate. Examination of excess zero values was con-
ducted by counting the frequency of zero values among 
the data and comparing this with the predicted zero fre-
quency of the Poisson distribution. There were excess 
zero values if the number of zero events was more than 
expected. Overdispersion was examined based on the 
assumption of Poisson distribution. If the variance was 
higher than the mean, then overdispersion may have 
occurred in the data. In addition, we calculated the devi-
ance by fitting the data with the Poisson distribution, and 
we computed the ratio of deviance to the degree of free-
dom (d.f.). A dataset with a ratio of > 1 is considered to be 
overdispersed (McCullagh and Nelder 1989).

The data of each year and site were combined, and 
70% of the total data were randomly selected to train 
the model. The remaining 30% of the data were the vali-
dation dataset. The performance of model fitting was 
evaluated based on root mean square error (RMSE), 
adjusted coefficient of determination (adj.  R2), Akai-
ke’s information criterion (AIC), and Schwarz’s Bayes-
ian information criterion (BIC; Akaike 1974; Schwarz 
1978). We selected models with small values of RMSE, 
AIC, and BIC. A large adj.  R2 value demonstrated a 
good model fit. The predictive capability of the model 
was assessed based on the mean squared prediction 
error (MSPR). In our study, a model with a small MSPR 
value was selected as the best model (Jung and Hu 
2015). The model selection procedures identified mod-
els with a good predictive ability based on the afore-
mentioned criteria recommended for application. The 
conservative isolation distance at various thresholds 
was estimated through 500 bootstrapping simulations. 
The 95th percentile of the distance generated through 

(7)distance =

√

(x − x′)2 −
(

y− y′
)2

the simulations was considered the conservative isola-
tion distance. All statistical analyses were performed 
using SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and 
R v 3.4.0 (R Development Core Team 2017) software.

Results
Wind direction during the flowering period
An overlap of at least 24  days occurred between the 
donor and recipient plant flowering periods during 
the eight experiments (Additional file  1: Table  S1). In 
most experiments, the overlap period was longer than 
1  month. The AES and TARI sites were located nearby; 
therefore, we applied meteorological data from the same 
weather station to both sites. The prevailing wind direc-
tion during the flowering period was north (Additional 
file 2: Table S2).

The relative frequency of northerly winds ranged from 
25 to 88%. The two recipient plots in the TARI experi-
ments were assumed to be upwind and downwind plots 
to evaluate the wind effect on pollination. Because the 
field arrangement and prevailing wind direction were not 
parallel, the recipient plots in the AES experiments could 
not be defined as upwind and downwind plots.

Distance and wind effects on CP
In the TARI experiments, the CP rates of the upwind 
and downwind plots were observed separately. The CP 
rates of both recipient plots of the AES experiments were 
observed jointly. The average CP rate fluctuated between 
0.48% and 5.07% over the shortest distance (0.35  m; 
Table 1).

The maximum and minimum CP rates over 0.35  m 
were 13.75% and 0%, respectively, in the TARI experi-
ments. The mean CP rate decreased rapidly with increas-
ing distance and was less than 1% at 1.75 m. The CP rate 
was relatively stable at distances exceeding 5.25 m. Some 
CP events were still observed at the maximum distance in 
most experiments. The mean CP rate in the upwind plots 
was higher than that in the downwind plots at the mini-
mum distance. The standard deviation of the CP rate at 
0.35 m was also higher in upwind plots, except for in the 
2013-1 experiment. The z-values of experiments 2013-
1, 2014-1, 2015-1, and 2016-1 were − 0.7133, − 0.225, 
0, and − 0.724, respectively (Additional file 3: Table S3). 
Based on the z-test results, wind effects on these four 
experiments were nonsignificant (all p > 0.05). In addi-
tion, we combined the data and calculated the z-values. 
The overall z-value was − 0.8208, and the wind effect 
remained nonsignificant. The result of ANOVA showed 
that the wind direction do not have an effect on the varia-
tion of CP rate. (Additional file 4: Table S4).
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Testing of excess zeros and overdispersion
In our study, a zero event was defined as an event with 
a CP rate of 0%. The proportion of zero events among 
each experiment was 74%, 75%, 71%, 90%, 75%, 77%, 76%, 
and 79% (Additional file 5: Table S5). The expected pro-
portion of zero events was calculated with the pdf of the 
Poisson distribution and compared with the observed 
proportion of zero events. All expected proportions 
of zero events were smaller than the observed propor-
tions. Therefore, all experimental data had the problem 
of excess zeros.

The mean and variance of the CP progeny numbers 
were calculated and compared to roughly check data 
overdispersion. In each experiment, the variance of the 
CP progeny number was larger than its mean (Additional 
file  6: Table  S6). Thus, data from the eight experiments 
may have been overdispersed. Furthermore, all ratios of 
deviance to d.f. were larger than 1, except for experiment 
2014-2. Both approaches indicated that the experimental 
data were over dispersed.

Model fitting
Given the absence of overdispersion, the data for model 
training and validation excluded the data of experiment 
2014-2. The remaining data were divided into training 
and validation datasets, which contained 70% and 30% 
of the total data, respectively. This study applied the ZIP 
and ZINB models with dispersal kernel functions to fit 
the excess zeros and overdispersed data. The ZIP and 
ZINB models were fitted with the training dataset and 
were evaluated separately.

According to the criteria, the ZIP model with logistic 
(ZIP-logistic), 2Dt (ZIP-2Dt), and Weibull (ZIP-Weibull) 
dispersal kernel functions were the three preferred 

candidate models (Table  2). All RMSE values of these 
models were 0.01043. The ZIP-logistic and ZIP-2Dt mod-
els were identified as the best models based on the adj.  R2 
criterion (both adj.  R2 = 0.01097). AIC and BIC also indi-
cated that ZIP-logistic and ZIP-2Dt were the best mod-
els (AIC = − 16,978; BIC = − 16,969). The adj.  R2, AIC, 
and BIC values of the ZIP-Weibull model were 0.01064, 
−16,977, and −16,968, respectively. Based on the adj.  R2 
criterion, we selected ZINB-Weibull, ZINB-exponential 
power, and ZINB-log-sech as the preferred candidate 
models. All RMSE values of these models were 0.00823. 
AIC and BIC also identified these models as the best 
among the ZINB models. The adj.  R2, AIC, and BIC val-
ues of ZINB-Weibull, which is the optimal ZINB model, 
were 0.38947, −17,860, and −17,853, respectively. The 
ZINB models were superior to the ZIP models. Even the 
ZINB model with the worst fitting criterion values per-
formed better than did the ZIP-Weibull model. Conse-
quently, the candidate ZINB models were chosen for the 
validation procedure.

Model validation and isolation distance recommendation
In accordance with the MSPR, the ZINB-log-sech, ZINB-
exponential power, ZINB-gamma, and ZINB-Weibull 
models had a good predictive ability in the new dataset. 
These models had small MSPR values of 0.000068767, 
0.000068742, 0.000068764, and 0.000068764, respec-
tively (Table  3). The MSPR values of these four models 
were similar. Based on the best fit, the ZINB-exponential 
power and ZINB-Weibull models were selected as the 
final models. The predicted CP rates of the ZINB-expo-
nential power and ZINB-Weibull models were compared 
with the observed CP rate. The predicted CP rates were 
higher than the observed CP rates at distances of 0.35, 

Table 2 Fitting criteria of the ZIP and ZINB models with the training dataset

RMSE: root mean square error; adj.  R2: adjusted coefficient of determination; AIC: Akaike’s information criterion; BIC: Schwarz’s Bayesian information criterion; MSPR: 
mean squared prediction error

Dispersal kernel function ZIP model ZINB model

RMSE Adj.  R2 AIC BIC RMSE Adj.  R2 AIC BIC

Log‑sech 0.01048 0.00286 − 16,963 − 16,954 0.00823 0.38911 − 17,859 − 17,852

Exponential power 0.01049 − 0.001 − 16,956 − 16,947 0.00823 0.38925 − 17,859 − 17,852

Power law 0.01044 0.01014 − 16,976 − 16,967 0.00826 0.38495 − 17,846 − 17,839

Logistic 0.01043 0.01097 − 16,978 − 16,969 0.00826 0.38517 − 17,847 − 17,840

2Dt 0.01043 0.01097 − 16,978 − 16,969 0.00824 0.38769 − 17,855 − 17,847

Gamma 0.01,064 − 0.0292 − 16904 − 16,895 0.00823 0.38884 − 17,858 − 17,851

WALD 0.01044 0.00994 − 16,976 − 16,967 0.00825 0.38542 − 17,848 − 17,841

Weibull 0.01043 0.01064 − 16,977 − 16,968 0.00823 0.38947 − 17,860 − 17,853

Neg. Exponential 0.01044 0.00989 − 16,977 − 16,966 0.00828 0.38183 − 17,838 − 17,829

Log‑normal 0.01,044 0.00954 − 16,975 − 16,966 0.00824 0.38717 − 17,853 − 17,846

Gaussian 0.01044 0.00971 − 16,977 − 16,965 0.00826 0.38444 − 17,846 − 17,837



Page 8 of 11Su et al. Bot Stud           (2020) 61:17 

1.05, and 1.75 m (Table 4). At distances of 2.45, 3.15, 3.85, 
and 4.55  m, both models underestimated the CP rate. 
The predicted CP rate varied little and was overestimated 
at distances larger than 5.25 m.

The thresholds of cross-pollination rates for recom-
mendation were 3%, 1%, and 0.9%, with reference to 
regulations in Taiwan, Australia, and the EU, respec-
tively. The recommended distance of each threshold was 
approached in both models (Table 5). For the 3% thresh-
old, 0.425 and 0.431 m were the distances recommended 
by the ZINB-exponential power and ZINB-Weibull mod-
els, respectively. A distance of approximately 1.35 m was 
recommended to avoid exceeding the 0.9% threshold.

Discussion
Estimating the CP rate involved setting targets to develop 
strategies to eliminate hybridization as part of the hybrid-
ization risk assessment between GM B. napus and B. 
rapa (Wilkinson et al. 2003). According to a study of gene 
flow between GM and non-GM B. napus, the mean CP 
rates at 2 and 16  m were 2.33% and 0.46%, respectively 
(Zhang et al. 2018a).

Table 3 Predicting criteria of the ZIP and ZINB models with the validation dataset

RMSE: root mean square error; adj.  R2: adjusted coefficient of determination; AIC: Akaike’s information criterion; BIC: Schwarz’s Bayesian information criterion; MSPR: 
mean squared prediction error

Dispersal kernel function ZINB model

RMSE Adj.  R2 AIC BIC MSPR

Log‑sech 0.0083 0.34657 − 7650.3 − 7644.9 0.000068767

Exponential power 0.0083 0.34681 − 7650.5 − 7645.2 0.000068742

Power law 0.00833 0.34179 − 7644.4 − 7639.1 0.000069270

Logistic 0.00831 0.34446 − 7647.7 − 7642.3 0.000068989

2Dt 0.0083 0.34595 − 7649.5 − 7644.1 0.000068832

Gamma 0.0083 0.3466 − 7650.3 − 7644.9 0.000068764

WALD 0.00831 0.34404 − 7647.2 − 7641.8 0.000069033

Weibull 0.0083 0.3466 − 7650.3 − 7644.9 0.000068764

Neg. Exponential 0.00836 0.33831 − 7641.2 − 7633.8 0.000069723

Log‑normal 0.0083 0.3456 − 7649.1 − 7643.7 0.000068869

Gaussian 0.00832 0.34363 − 7647.7 − 7640.3 0.000069163

Table 4 Actual and  predicted cross-pollination rate (%) 
of the ZINB models by distance

CP: cross-pollinated rate
a Average cross-pollinated rate of the validation dataset

Distance (m) Average CP (%)a Predicted CP (%)

ZINB‑Exponential 
power model

ZINB‑
Weibull 
model

0.35 2.8025 3.0087 2.9728

1.05 0.9989 1.1185 1.1617

1.75 0.3321 0.4916 0.4771

2.45 0.4401 0.2614 0.2541

3.15 0.2085 0.1772 0.1765

3.85 0.1497 0.1461 0.1475

4.55 0.3062 0.1351 0.1365

5.25 0.0631 0.1315 0.1323

5.95 0.0518 0.1305 0.1309

6.65 0.078 0.1303 0.1304

7.35 0.0358 0.1302 0.1303

8.05 0.0503 0.1302 0.1302

8.75 0.0256 0.1302 0.1302

9.45 0.0294 0.1302 0.1302

10.15 0.0398 0.1302 0.1302

10.85 0.0256 0.1302 0.1302

11.55 0.0167 0.1302 0.1302

12.25 0 0.1302 0.1302

12.95 0.0308 0.1302 0.1302

Table 5 Isolation distance (m) evaluated by  both  zero-
inflated negative binomial (ZINB)-exponential power 
and ZINB-Weibull models under threshold values 3%, 1%, 
and 0.9%, respectively

Threshold (%) Model Isolation 
distance 
(m)

3 ZINB‑Exponential power 0.425

ZINB‑Weibull 0.431

1 ZINB‑Exponential power 1.27

ZINB‑Weibull 1.25

0.9 ZINB‑Exponential power 1.36

ZINB‑Weibull 1.34
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In other studies, the average CP rates observed at 
0.5, 1, and 15 m were 2.50%, 1.28%, and 0.13%, respec-
tively (Zhao et  al. 2013). The mean CP rates of 2.88% 
and 1.02% at 0.35 and 1.05 m, respectively, in our study 
were similar to those in previous studies. However, the 
mean CP rate of 0.45% and 0.030% at 1.75 and 12.95 m, 
respectively, in our study were lower than those in pre-
vious studies. Given the pollen competition between 
species and the plant density, the relatively low CP rate 
was predictable. The spontaneous hybridization rate 
between GM B. napus and B. rapa was 0.196% when 
the two species were planted in adjacent rows (Xiao 
et al. 2009). A hybridization rate of 1.46% was observed 
in a wild B. rapa population within 30  m of B. napus 
fields in the United Kingdom (Wilkinson et  al. 2003). 
For B. rapa interplantation with a B. napus field, the 
hybridization rate was approximately 7% (Warwick 
et  al. 2003). The results of gene flow may differ under 
particular conditions. In this study, the results reflected 
gene flow between two small adjacent fields, a typi-
cal field arrangement in Asian countries. According to 
the average CP rate in our experiments, B. rapa plants 
within 1.05 m contained approximately 1.8% of hybrid 
progenies. Those hybrids may result in immediate har-
vest loss for a farmer. Furthermore, hybrids containing 
a transgene may develop into a volunteer population. 
The volunteer population with the transgene may 
become transgene donors or herbicide-resistant weeds 
and cause economic loss in the future. A volunteer 
population with a transgene may affect the agricultural 
ecosystem. Consequently, the coexistence of these two 
species and evaluation of long-term effects on the envi-
ronment are necessary in Asian countries.

Brassica napus and B. rapa are pollinated by insects. 
Several studies have indicated that the wind direction 
does not affect the gene flow of B. napus (Funk et  al. 
2006; Rieger et  al. 2002). To evaluate the wind effect, 
the prevailing wind direction was recorded in the 
TARI field, and the recipient plots were established 
on the upwind and downwind sides of the donor plot. 
For each experiment at TARI, the proportion of CP 
events in the two recipient plots was nonsignificantly 
different. Even after combining data from the four 
experiments, the proportion of CP events between the 
upwind and downwind plots was not considerably dif-
ferent. This indicated that wind did not influence gene 
flow. Another study posited that wind only affects gene 
flow and contributes to pollination when insect polli-
nators are scarce (Hayter and Cresswell 2006). A study 
investigated wind pollination without insects by using 
nets (Zhang et  al. 2018b). Therefore, the contribution 
of pollination to B. napus gene flow may depend on 

the abundance of insects. Insect pollinators were suf-
ficiently abundant for pollination in the experimental 
fields; thus, the wind effect was minor in this study.

In a previous study, the ZIP model was introduced to 
fit the corn CP rate data (Bensadoun et  al. 2014). The 
number of cross-pollinated progenies was assumed to 
follow a Poisson distribution. However, the CP data typ-
ically presented excess zeros and overdispersion; thus, 
the CP data were assumed to follow a ZIP distribution. 
In the present study, the test results for excess zeros 
and overdispersion indicated that our experimental 
data contained excess zeros and overdispersion, except 
for experiment 2014-2. The CP rate for short distances 
was lower in the 2014-2 experiment than in the other 
experiments, and overdispersion was not present in the 
2014-2 experimental data. Due to data characteristics, 
we used the ZIP and ZINB models to estimate the CP 
rate. The experimental data were combined, with the 
exclusion of the 2014-2 experimental data. According 
to all criteria, the ZINB model was superior to the ZIP 
model, and the ZINB model was more appropriate for 
handling count data in excess zeros and overdispersion 
(Zulkifli et al. 2011). The ZINB-exponential power and 
ZINB-Weibull models were the two best models for fit-
ting the data. The adj.  R2 values for the ZINB-exponen-
tial power and ZINB-Weibull models were 0.38925 and 
0.38947, respectively. The performance of both models 
was better than the results obtained in a previous study 
that modeled the CP rate between B. napus and its rela-
tives (Zhang et  al. 2018a). Model fitting was affected 
by the variation of the CP rate at short distances. High 
variation at short distances has also been observed in 
other studies (Beckie et al. 2003; Damgaard and Kjells-
son 2005). The CP rate variation within a few meters 
of the donor plot may be attributed to insect behavior 
(Funk et  al. 2006). Although the predicted CP rates 
for the two models were overestimated within 1.75 m, 
it was acceptable because of the high variation at a 
short distance. The overall predicted CP rates within 
4  m were similar to the average CP rate. The recom-
mended distances were similar for both models. The 
ZINB-Weibull model provided a relatively conserva-
tive isolation distance at strict thresholds. The recom-
mended distance for GM and non-GM B. napus at a 
0.9% threshold was 0 m (Weekes et al. 2005). For gene 
flow between B. napus and B. rapa, 1.35 m was applica-
ble for the 0.9% threshold in our study. The CP process 
was affected by many factors: differences in experimen-
tal scale, species, and model may have led to various 
results. A method that can integrate all factors is neces-
sary to predict scenarios in future research.
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Conclusion
This study conducted eight experiments at two sites 
for 4  years to evaluate the risk of gene flow between 
B. napus and B. rapa on a small field scale, similar to 
typical field sizes in Taiwan. The multiple sites and 
years of these experiments addressed variation in field 
conditions of each year and site. Therefore, the result 
was robust to different years and sites. The risk of long-
distance gene flow between B. napus and B. rapa was 
negligible. However, the risk remains beyond the short 
distances of adjacent fields. The experiments provided 
a preliminary gene flow risk assessment between these 
two species in Taiwan and provided insights for further 
research and coexistence strategies.
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