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Abstract 

Background:  Water-deficit stress is known as one of the most severe environmental stresses affecting the growth of 
plants through marked reduction of water uptake, which leads to osmotic stress by lowering water potential. Adopt-
ing appropriate varieties using soil microorganisms, such as arbuscular mycorrhiza (AM) fungi, can significantly reduce 
the adverse effects of water deficiency. This study aimed to evaluate the role of Funneliformis mosseae on nutrient 
uptake and certain physiological traits of two chamomile varieties, namely Bodgold (Bod) and Soroksári (Sor) under 
osmotic stress. For pot culture, a factorial experiment was performed in a completely randomized design with three 
factors: osmotic stress (PEG 6000) was applied along with Hoagland solution at three levels (0, -0.4 and -0.8 MPa), two 
German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)), and AM inoculation (Funneliformis mosseae species 
(fungal and non-fungal)) at four replications in perlite substrate.

Results:  Osmotic stress significantly reduced the uptake of macro-nutrients (N and P) and micro-nutrients (Fe, Cu, 
Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activ-
ity of antioxidant enzymes in the shoots of both varieties increased under osmotic stress. Regarding the Sor variety, 
the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents 
while enhancing antioxidant enzymes and reducing the adverse effects of osmotic stress. Under osmotic stress, the 
growth and total dry weight were improved upon AM inoculation.

Conclusions:  In general, inoculation of chamomile with AM balanced the uptake of nutrients and increased the level 
of osmolytes and antioxidant enzymes; hence, it improved plant characteristics under osmotic stress in both varieties. 
However, it was found to be more effective in reducing stress damages in the Sor variety.
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Introduction
Water-deficit stress (due to global warming and climate 
change) is the leading cause of decremented annual 

plant performance. In arid and semi-arid regions, plants 
are exposed to water-deficit stress due to the simultane-
ous increase in the rate of transpiration and tempera-
ture, in addition to the reduction in root access to water 
(Halo et  al. 2020). Water-deficit stress affects plant life 
in many ways; for example, shortage of water to roots 
reduces the rate of transpiration and induces oxidative 
stress (Hasanuzzaman et  al. 2013). Water-deficit stress 

Open Access

*Correspondence:  aminsalehi@yu.ac.ir
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, 
Yasouj University, Yasouj, Iran
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40529-021-00328-3&domain=pdf


Page 2 of 17Ebrahimi et al. Botanical Studies           (2021) 62:22 

imparts deleterious effects on plant growth by affecting 
enzyme activity, nutrient uptake, and nutrient assimila-
tion (Ahanger et al. 2017).

The use of herbal medicinal products and supplements 
has tremendously increased over the past three decades. 
Over 80% of the world’s population relies on these prod-
ucts as a part of their primary healthcare (Sharma, 2004; 
Ekor 2014). German chamomile (Matricaria chamomilla 
L.) belongs to the family of Asteraceae, one of the most 
common medicinal plants (Wichtl 2004). Chamomile is 
a prominent medicinal plant whose compounds are con-
sidered to be safe (Sharifi et al. 2014). German chamomile 
flower and its extracts have antimicrobial and antioxidant 
activity, and have been used as a painkiller, anti-anxiety, 
antispasmodic, anti-inflammatory, and anti-gastrointesti-
nal agent (Rehmat et al. 2020). With the rise in the global 
demand for medicinal plants, there is an urgent need to 
increase their cultivation and production. The increas-
ing demand for medicinal plants, especially chamomile, 
necessitates deeper knowledge to adopt drought-resistant 
varieties. In addition to water management, the selection 
of the right genotype can also contribute to preventing 
water-deficit stress damages and promoting the sustain-
able use of water resources. Concerning medicinal plants, 
although water-deficit stress increases the synthesis of 
secondary metabolites, it can decline the growth of the 
plant, particularly its vegetative and reproductive organs 
(biomass) which generally contain medicinal compounds 
(Selmar et  al. 2017). It also reduces the nutrient uptake 
of chamomile (Salehi et al. 2016), which plays a vital role 
in its total dry weight and essential oil content (Andrze-
jewska and Woropaj-Janczak 2014). Under water-deficit 
stress, lipids, proteins, and nucleic acids are damaged due 
to the rise in the content of reactive oxygen species (ROS) 
(Uzilday et  al. 2012). Plants exploit effective systems, 
such as antioxidants enzymes catalase (CAT​), superoxide 
dismutase (SOD), and ascorbate peroxidase (APX) along 
with osmolytes, such as soluble sugars to combat toxic 
ROSs and reduce their consequent damages (Al-Arjani 
et al. 2020).

As one of the commercial varieties of chamomile tetra-
ploid, Bodgold (Bod) has shown a favorable performance 
in terms of total dry weight and essential oil among the 
other types of diploid and tetraploid chamomile (Banat-
ska (2x), Lutea (4x), Zloty Lan (4x), and Goral (4x)) 
(Tsivelika et al. 2018). Soroksári (Sor) is another impor-
tant diploid variety of chamomile with a desirable essen-
tial oil content compared to Lutea, Goral (tetraploid), 
and Bona (diploid) varieties, according to Gosztola et al. 
(2010). Heretofore, no comparative studies have explored 
the activity of antioxidant enzymes, absorption of nutri-
ents, and dry weight of these varieties under stress con-
ditions. Nonetheless, a study reported an increase in 

proline and antioxidant activity of the Bod variety under 
water-deficit stress (Benabdellah et al. 2011). Arbuscular 
mycorrhizal (AM) fungi coexist with the roots of most 
plants and have exhibited a great potential for counter-
acting environmental stresses since they can increase the 
availability of plants to a larger volume of the rhizosphere 
and also improve water and nutrient uptake (Zhang et al. 
2018) via morphological changes of root volume and 
their hyphae (Hameed et  al. 2014). Additionally, these 
fungi enhance the nutrient uptake by increasing the syn-
thesis of the compounds and enzymes involved in the 
absorption process, such as phosphatase (Hu et al. 2013). 
However, there is a strong body of evidence on drought 
stress alleviation by AM in different crops (Begum et al. 
2019).

Improving the nutrient and water absorption by AM 
promotes plant growth and reduces the adverse effects 
of water-deficit stress caused by PEG (Benabdellah et al. 
2011; Wu et al. 2013). The beneficial effects of AM have 
been reported in several Asteracea families under water-
deficit stress; for instance, under water-deficit stress 
condition, AM improves the absorption of macro and 
micro-nutriments and increases the total dry weight of 
plants from the Asteracea family, including Echinacea 
angustifolia (Attarzadeh et al. 2019), German chamomile 
(Benabdellah et  al. 2011), Helianthus annuus (Gholam-
hoseini et  al. 2013), Marigold (Asrar and Elhindi 2011), 
Safflower (Abbaspour 2010), and Scabious (Knautia 
arvensis) (Doubková et al. 2013). AM also improves the 
growth and yield in Echinacea angustifolia by increasing 
the defensive level of antioxidants (catalase and peroxi-
dase) and osmolyte (proline) enzymes (Attarzadeh et al. 
2019).

Therefore, the present study aimed to evaluate the 
effect of Funneliformis mosseae on reducing the impact 
of osmotic stress of the two most important German 
chamomile varieties to determine the more resistant 
one, according to their physiological traits and nutri-
ent uptake. Deciphering the AM-mediated mechanisms 
in the plants’ protection responses and metabolic path-
ways under unfavorable conditions is required to gain 
insight into their potential. Furthermore, it will shed light 
on new approaches to exploiting AM as a bioprotective 
tool against osmotic stresses in sustainability and food 
security.

Materials and methods
Experimental design
A pot experiment was performed in the facto-
rial arrangement within a completely randomized 
design with four replications in the research green-
house of the Faculty of Agriculture at Yasouj Uni-
versity. The greenhouse temperature was 25 ± 2  °C. 
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A soilless cultivation system with perlite, as inert 
substrate, was developed to study the effect of dif-
ferent osmotic stresses on chamomile plants colo-
nized with the AM Funneliformis mosseae. The PEG 
treatment (osmotic stresses) was applied along with 
Hoagland solution at three osmotic stresses (control, 
−  0.4, and −  0.8  MPa). Distilled water was used as 
the control treatment with Hoagland solution. Dif-
ferent levels of osmotic stress were prepared utiliz-
ing polyethylene glycol 6000 (PEG) via the formula 
proposed by Michel and Kaufman (1973) and applied 
in nutrient solutions. The second studied factor was 
the use of arbuscular mycorrhiza (AM) fertilizer (F. 
mosseae species (Zist Fanavar Sabz Company, Iran) 
(fungal and non-fungal)), which was initially inocu-
lated in the culture medium. In mycorrhizal plants, 
each pot of mycorrhizal treatment received 40  g of 
AM inoculant (containing spore numbers of 120  g−1 
substrate) at a depth of 5  cm and incorporated well 
within the cultivation bed before transplanting. Two 
German chamomile varieties (Bodgold (Bod) and 
Soroksari (Sor)) were considered. The Bod vari-
ety seeds were purchased from Isfahan Agricultural 
and Natural Resources Research Center and the Sor 
variety was supplied by the Yasouj Zardband Com-
pany. The seeds of both varieties were sterilized with 
sodium hypochlorite solution (1%) for 3  min and 
then washed several times in distilled water. To pro-
duce seedlings, the seeds were first transplanted in 
a bed of peat moss and cocopeat (1: 2) in a 72-cell 
(30 cc) seedling tray. At the 4–6-leaf stage, they were 
transferred to plastic pots with a height of 25  cm 
and a diameter of 18 cm (6 seedlings per pot), filled 
with sterilized perlite (sterilized with autoclave 
(105  °C for 30  min)). After transferring the plants 
to the pot, the plants were pre-cultured with 1/4 
Hoagland’s nutrient solution, which contained phos-
phorus: 7.75 mg L−1 for 4 weeks to adapt- and estab-
lish the seedlings to the new condition. During the 
osmotic stress phase, the modified Hoagland’s nutri-
ent solution was used in this protocol, which con-
tained phosphorus: 31  mg L−1, 5  mM KNO3, 5  mM 
Ca(NO3)2, 1 mM NH4H2PO4, 2 mM MgSO4, 0.4 mM 
H3BO3, 0.08  mM MnCl2, 1.8  μM ZnSO4, 0.1  μM 
(NH4)6 Na2MoO4, 3  μM CuSO4, and 0.1  mM FeSO4 
(Hoagland and Arnon 1950).

The osmotic stress treatments started 4  weeks 
after transplanting, and osmotic stress was gradually 
applied and maintained for 4  weeks. The pH of the 
solutions was adjusted to 5.8 ± 0.1 prior to each irriga-
tion. It should be noted that all the seed-starting con-
tainers, pots, and seedling beds were decontaminated 

with a greenhouse autoclave, and distilled water was 
used to make all the nutrient solutions.

Sampling to measure dry weight, physiological, 
and nutrients traits
28 days following osmotic stress, two plants per pot were 
harvested and pooled as one replicate (four replicates for 
each treatment), and young upper leaves were sampled 
to measure the physiological traits. The samples were 
transferred to the laboratory after being placed in a liquid 
nitrogen container, where they were stored at − 40 °C. To 
measure the traits associated with the dried sample, four 
plants were harvested from each pot, pooled as one repli-
cate, and dried at 70 °C for 48 h.

Mycorrhizal determinations
The plants were harvested 56  days following inocula-
tion, and the percentage of mycorrhizal root colonization 
was estimated by visual observation of fungal coloniza-
tion after clearing the washed roots with distilled water 
and cutting them into segments with a length of 1  cm. 
Approximately 100 root segments were randomly chosen 
and cleared in 10% KOH, after which they were placed in 
a water bath at 90 °C for 30 min and stained with 0.05% 
Trypan blue in acetic acid (v/v), according to Cao et  al. 
(2013). The rate of mycorrhizal colonization was esti-
mated by Biermann’s and Linderman (1981) method.

Enzyme activity
To prepare the enzymatic extract, 3  ml of extraction 
buffer (100 mM potassium phosphate at pH = 7.8, 0.1 M 
EDTA, and 0.1 M PVP) was homogenized with 0.1 g of 
leaf sample using a mortar in an ice bath. The obtained 
homogeneous samples were centrifuged for 30  min 
(14,000  rpm at 4  °C) and the supernatant was used to 
measure the enzymes activity. Catalase (CAT) activ-
ity was evaluated by monitoring the reduction in the 
absorption of hydrogen peroxide in the reaction mixture 
at 240  nm employing a spectrophotometer (Aebi 1984). 
Peroxidase (POD) activity was also assessed according 
to the absorption of the reaction mixture (enzymatic 
extract, potassium phosphate buffer, guaiacol, along with 
30% H2O2) at 470 nm (Zhou and Leu 1999). Polyphenol 
oxidase (PPO) activity was measured based on the inten-
sity of the orange color of methyl catechol at a wave-
length of 420 nm produced in the reaction mixture (Kahn 
1975). The CAT, POD, and PPO activity of the extract 
was expressed as enzyme unit mg−1 protein min−1. One 
unit of enzyme activity is defined as the amount required 
to decompose µl mol of the substrate within one min.
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Determination of proline content
To determine the amount of proline in the shoot, 0.1 g of 
fresh tissues were homogenized with 10 ml of 3% aque-
ous sulfosalicylic acid followed by centrifugation. We 
blended 2 ml of the supernatant with acid ninhydrin and 
glacial acetic acid (2 ml of each). The mixture was kept in 
a water bath for 1 h at 100 °C. Subsequently, the reaction 
mixture was extracted with toluene (4 ml), whose absorb-
ance was determined at 520 nm after cooling down to the 
room temperature (Paquin and Lechasseur 1979).

Determination of the total soluble sugar
The total soluble sugar was determined via the method 
specified by Irigoyen et  al. (1992). Fresh leaves (0.1  g) 
were added to 5 ml of 80% ethanol in a water bath and 
heated for 1 h at 80  °C. Afterwards, 1 ml of the sample 
extract was taken to another set of test tubes and mixed 
with 1  ml each of 18% phenol and  distilled water. They 
were then remained at the room temperature for an 
hour. Finally, 5  ml of sulfuric acid was added and the 
whole mixture was vortexed. The absorbance  was read 
at 490  nm with a UV spectrophotometer. Ethanol 80% 
was used as a blank sample. Absorbance was recorded at 
625 nm utilizing a spectrophotometer.

Measurement of nutrients
The extract for measuring the nutrients was prepared 
based on digestion via the H2SO4-salicylic acid-H2O 
method. This extract was employed to measure the con-
centrations of nitrogen (N) (Novozamsky et  al. 1974), 
manganese (Mn) (Atomic Absorption), potassium (K) 
(Film Photometer) (Knudsen et  al. 1982), and phospho-
rus (P) (Røtset 1985). To measure iron (Fe), zinc (Zn), 
and copper (Cu), the samples were placed at 500  °C for 
4 h, and 5 ml of two normal hydrochloric acids (2n) was 
added to them. The samples were then placed on a heater. 
The concentration of Fe, Zn, and Cu in the shoot and the 
roots of the plant was determined through the atomic 
absorption (Chapman and Pratt 1961).

Statistical analysis
All the analytic determinations were carried out in quad-
ruplicate. The main effects of the interaction among the 
experimental factors were determined via the analysis of 
variance (ANOVA) using a general linear model. Subse-
quently, the means were separated with a least signifi-
cant difference (LSD) test with P < 0.05 utilizing the SAS 
software 9.1 (SAS Institute, Cary, NC, United States); the 
graphs were drawn with Excel 2013 software. The com-
parison of the means was performed using the LSD at 
a P-value of 5%. In case of a significant interaction, the 
LS means procedure was used to compare the interac-
tions. When an F-test indicated statistical significance 

at P < 0.05, the protected least significant difference was 
used to separate the means of the main effect, and the 
significant interactions were separated applying the slic-
ing method. Once the interactions were not significant, 
we only discussed the main effects. In case the main 
effects and the two-way and the three-way interaction 
effects of the traits were significant, we only discussed the 
three-way interaction effects or when the main effects, or 
two-way interaction traits were significant, we only dis-
cussed the two-way interaction effects. Pearson correla-
tion analysis was carried out by the XLSTAT (Addinsoft, 
Paris, France) program.

Results
Root colonization
At the end of the experiment, no AM colonization was 
found in the roots of the non-inoculated chamomile 
varieties of the seedlings. Colonization assay results, 
represented in Fig.  1, showed that the plant roots were 
significantly colonized by AMF as compared to those 
of the un-inoculated control treatments under osmotic 
stress. In the stained root segments, the root mycorrhi-
zas had clearly visible intraradical arbuscules, vesicles, 
and internal hyphae (Fig.  1). Osmotic stress reduced 
the mycorrhizal colonization in both varieties. The rate 
of root colonization was similar between the two varie-
ties. Moreover, colonization in the control treatment 
was about 9% higher than the -0.4 MPa while its rate did 
not significantly differ between the − 0.4 and − 0.8 MPa 
treatments (Fig. 1).

Concentration of macro‑nutrients (N, P, and K) in roots 
and shoots
The three-way interaction between different levels of 
osmotic stress, mycorrhiza, and variety was signifi-
cant on the nitrogen (N) and phosphorus (P) concen-
trations of the shoots (Table  1). However, the P and N 
concentrations of the roots and the potassium (K) level 
of the shoots and roots were evaluated based on their 
significance at 5% level as interaction and main effects 
(Table 1). Osmotic stress reduced N accumulation in the 
shoots. High levels of osmotic stress (−  0.8  MPa) sig-
nificantly declined the uptake of these nutrients in the 
Bodgold (Bod) variety. Regardless of AM application, 
the N concentration of the shoots of the Soroksári (Sor) 
variety was much higher than that of the Bod variety. 
Nonetheless, the difference became more evident under 
osmotic stress; accordingly, the N concentrations of the 
shoots of Bod were 4% lower than those of the Sor vari-
ety for AM + treatment under normal conditions. Under 
stress at osmotic stresses of − 0.4 and − 0.8 MPa, AM-
inoculated roots this value reached 13 and 35%, respec-
tively (Fig.  2). The osmotic stress also reduced the N 
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concentration of the roots, but AM partially increased 
the concentration of this uptake of the nutrient in the 
roots under both stress and control conditions. Addition-
ally, the N concentrations of the roots of both varieties 
were almost the same. However, the effect of AM on the 
increase in the concentration of this nutrient was higher 
in Sor as compared with that in the Bod variety (Table 2). 
AM reduced the adverse effects on the P concentration of 
the shoots. At the osmotic stress of − 0.4 and − 0.8 MPa, 
the impact of AM on the amount of P in the shoots was 
stronger than that in the Bod variety. In the AM + treat-
ment, the P concentration in the shoots of the Bod vari-
ety was 20.5 and 27.5% higher at stress levels of −  0.4 
and −  0.8  MPa, respectively. In case of the Sor variety, 
this parameter was 12 and 10% higher compared to the 
AM- treatment. In general, the P level of the shoot of 
the Bod in the Sor variety was lower than that in the Sor 
variety; thus, the highest P concentration of the Sor vari-
ety shoots was observed upon AM inoculation (Fig.  2). 
The P concentration of the roots also decreased with the 
reduced amount of osmotic stress. The P amount of the 
roots was higher in the Sor variety. With the increase in 
stress, the mentioned difference declined as the P con-
centration of the Sor roots was 25% under the control 
condition, which decremented to 11 and 3% at osmotic 
stresses of −  0.4 and −  0.8 MPa, respectively (Table 2). 
According to Table  2, AM caused a 12% enhancement 
in the P concentration of the roots. Osmotic stress 
increased the K level of the shoots and roots. Under 
non-stress conditions, the K concentration of the shoots 
of the Sor variety was 10% higher than that of the Bod 

variety. With the rise in the osmotic stress, the difference 
narrowed and the K concentration of the shoots were not 
therefore significantly different between the two varie-
ties at the osmotic stress of -0.8 MPa. According to the 
mean comparison of the main effects of the treatments 
(Table 2), AM generally increased the K concentration of 
the shoots in the chamomile by 9%. Both osmotic stress 
and AM treatments enhanced the K concentration of the 
roots whereas the Sor variety exhibited higher root K 
concentration. As already stated, AM increased the root 
K concentration. Under stress conditions, this increase 
was more profound; therefore, the potassium concentra-
tions of the AM-inoculated roots were respectively 17, 
25, and 19% higher than those in the non- AM- treatment 
under normal (control) and osmotic stress of − 0.4 and 
− 0.8 MPa (Table 2).

Concentration of micronutrients (Fe, Zn, Mn, and Cu) 
in roots and shoot
The three-way interaction between different osmotic 
stress levels, AM, and varieties was significant only 
on the iron (Fe) concentration of the shoots (Table 1). 
However, the comparisons between Fe, zinc (Zn), cop-
per (Cu), and manganese (Mn) concentrations of the 
roots and other micro-elements in the shoots were 
evaluated based on the significance level of 5% for 
the main effects and the two-way interaction effects 
(Table 3). Osmotic stress reduced the Fe concentration 
of the shoots in both varieties; however, AM signifi-
cantly increased the amount of this nutrient at all the 
levels. In comparison with AM-, AM + enhanced the 
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Fe concentration of the shoots of the Bod variety by 12, 
12.5, and 44% under osmotic stresses of 0, −  0.4, and 
−  0.8  MPa, respectively. Moreover, the Fe concentra-
tion of Sor correspondingly increased by 5, 22, and 29% 
(Fig.  2). AM also incremented the accumulation of Fe 
in the roots of these plants under stress conditions. On 

the other hand, the Fe concentrations of the roots of 
the two studied varieties were not significantly different 
under normal conditions. The reduction in the osmotic 
stresses declined the Fe concentration of the roots in 
both varieties; nonetheless, its effect was more signifi-
cant on the Bod variety (Table 3).
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Fig.2  Interaction effect of osmotic stress (control, − 0.4, and − 0.8 MPa) × arbuscular mycorrhiza (AM) × variety on N content in shoot (a), P 
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Table 2  Interaction effect of osmotic stress with variety, osmotic stress with arbuscular mycorrhiza, arbuscular mycorrhiza with variety 
and main effect of arbuscular mycorrhiza on macro nutrients uptake of shoot and root of chamomile

Water-deficit stress at three osmotic stresses (control, − 0.4, and − 0.8 MPa). Plants inoculated (AM +) or not inoculated (AM−) with the arbuscular mycorrhiza fungus 
F. mosseae, two German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)). Means followed by common letter are not significantly different at the level of 5% 
(LSD test)

Treatments Shoot concentration Root concentration

K (mg g−1 DW) N (mg g−1 DW) P (mg g−1 DW) K (mg g−1 DW)

Two-way interactions O × Var Control Bod 36.5e 10.7b 9.7e 18.6f

PEG-0.4 Bod 51.8c 8.6c 13.2c 30.1d

PEG-0.8 Bod 58a 4.5e 16.5a 43.7b

Control Sor 41d 11.3a 12.2d 24.33e

PEG-0.4 Sor 54b 8.7c 14.7b 38.4c

PEG-0.8 Sor 57.8a 4.9d 17a 53.7a

O × AM Control Am +  40.8d 11.9a 11.5e 23.1e

PEG-0.4 Am +  55.0b 10.1b 14.9c 38.1c

PEG-0.8 Am +  60.0a 5.2d 17.6a 53.0a

Control Am− 36.7e 10.2b 10.5f 19.8f

PEG-0.4 Am− 50.8c 7.2c 13.1d 30.5d

PEG-0.8 Am− 55.7b 4.1e 15.8b 44.4b

AM × Var Am +  Bod 51.1b 8.8b 13.8b 33.4c

Am- Bod 46.4d 7.1c 12.5c 28.2d

Am +  Sor 52.7a 9.3a 15.5a 42.7a

Am− Sor 49.1c 7.2c 13.8b 34.9b

Main effects AM Am +  51.9a 9.0a 14.7a 38.1a

Am− 47.8b 7.2b 13.1b 31.6b
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Osmotic stress reduced the Cu concentration of the 
shoots (Table  3). Under normal conditions, there were 
no significant differences between the Mn concentrations 
of the shoots of the two varieties. The shoots of the Bod 
variety showed a decline in Mn at − 0.4 and − 0.8 MPa 
compared to those in the control. The reduction in this 
nutrient was observed in the shoot of the Sor variety 
only at the le−  0.8  MPa. The Mn and Cu levels of the 
shoots in both varieties did not significantly differ, but 
AM increased the concentration of both nutrients with 
a higher rate of increase in the shoot of the Sor variety. 
Osmotic stress reduced Mn and Cu concentrations of the 
root. Under both stress and normal conditions, the level 
of these nutrients was higher in Sor root (Table 3). AM 
also increased the Zn level of the shoot under osmotic 
stress conditions. The Zn concentration of the shoots 
was higher at osmotic stresses of −  0.4 and −  0.8  MPa 
as compared with that in the control condition. Regard-
ing the root, a reverse trend was observed, and under 
osmotic stress, the root concentration of these nutrients 
was less than that in the controls. In addition, the Zn 
level of the shoot was higher in the Sor variety under all 
conditions; however, this was significant in normal and 
osmotic stress of −  0.4  MPa (Table  3). AM inoculation 
increased the Zn concentration of chamomile by 16% 
(Table 3). There were no significant differences between 
the Mn concentrations of the shoots of the two varie-
ties under normal conditions. A decrease was, however, 
observed in the Mn level of the Bod at all the stress lev-
els. Nonetheless, the decrease in Mn concentration of 
the shoot of Sor was observed only at the stress level of 
-0.8  MPa. AM enhanced the Mn and Cu levels of the 
shoots of the Sor and Bod varieties although their dif-
ference was not significant. Osmotic stress reduced Mn 
and Cu concentrations of the root, but the level of these 
nutrients was higher in Sor roots than that in Bod under 
the stress and control conditions. AM also increased the 

Zn concentration of the shoot under osmotic stress con-
ditions. The results revealed that the Zn amount of the 
shoot was higher than that of the controls at osmotic 
stresses of − 0.4 and − 0.8 MPa. Concerning the root, the 
trend was the opposite as the amount of these nutrients 
in the root was lower than that in the controls. Further-
more, the Zn concentration of Sor shoot was higher than 
that of Bod under all the conditions, which was signifi-
cant under normal and osmotic stresses of -0.4 MPa.

Osmolytes
According to the results (Table  4), the three-way inter-
action of variety, osmotic stress and AM significantly 
affected the proline level whereas the amount of the total 
soluble sugar was affected by the interaction of osmotic 
stress × variety and osmotic stress × AM. The osmotic 
stress generated by PEG increased the levels of proline 
and total soluble sugar in both varieties. The highest 
level of these osmolytes belonged to the osmotic stress 
of −  0.8  MPa. The proline level of Sor was higher than 
that of Bod variety in all the treatments. Additionally, 
under stress and non-stress conditions, the total soluble 
sugar content of Sor was more than that of Bod. Under 
stress conditions, AM increased the amount of proline 
in both varieties; however, its effect on the increase in 
the osmolyte was more evident in the Bod variety. An 
increase was also observed in the amount of the total 
soluble sugar of the AM-inoculated samples at different 
osmotic stresses (Fig. 3).

The activity of antioxidant enzymes
The three-way interaction of the osmotic stress, AM, and 
variety was significant on the levels of POD, PPO, and 
CAT enzymes (Table  4). Osmotic stress increased the 
activity of all the three enzymes compared to the non-
stress conditions. Under stress conditions, the activities 
of CAT and PPO were higher in Sor as compared with 

Table 4  Analysis of variance of osmotic stress, arbuscular mycorrhiza and variety and their interactions effects on osmolytes, activity of 
antioxidant enzymes (catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO)), and shoot and root dry weights

O Osmotic stress, Var Varieties, AM Arbuscular mycorrhizal inoculation, ns non-significance at P ≤ 0.05; *P ≤ 0.05; **P ≤ 0.01, statistical significance

Source of variation df Proline Total soluble sugar CAT​ POD PPO Shoot dry weight Root dry weight

O 2 136.50** 36248.390** 3864.92** 2.62** 217.80** 1.09** 0.002**

AM 1 16.54** 2693.25** 281.51** 0.13** 36.63** 0.083** 0.008**

Var 1 30.56** 753.58** 210.45** 0.34** 33.87** 0.015** 0.00086**

O × AM 2 1.12** 419.88** 26.07** 0.009** 4.40** 0.017** 0.00083**

O × Var 2 0.04** 79.14** 43.14** 0.00** 6.19** 0.148** 0.0001**

AM × Var 1 0.44** 6.87ns 2.59ns 0.01** 1.35** 0.0068** 0.0003**

O × AM × Var 2 0.43** 17.17ns 8.18** 0.013** 0.9** 0.0058** 0.00009ns

Error 36 0.006 7.40 0.832 0.0003 0.126 0.0001 0.00003

CV% 1.32 2.92 4.41 3.46 5.08 2.25 5.88
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those in Bod variety. Under stress conditions, the activ-
ity of the POD enzyme in the Sor variety was higher. 
AM also enhanced CAT and POD under the control 
conditions as well as osmotic stress levels of −  0.4 and 
−  0.8  MPa. The uppermost activity of these enzymes 
was observed in both varieties upon AM inoculation 
under the stress potential of -0.8  MPa. For both varie-
ties, the uppermost activity of these enzymes belonged 
to AM inoculation and the stress potential of − 0.8 MPa. 
Although the level of PPO enzyme in the stress condition 
was higher than that in the control, the highest activity 
was observed under osmotic stress conditions (-0.4 MPa) 
in the AM-inoculated plants (Fig. 4).

Dry weight of the roots and shoots
A significant three-way interaction was observed regard-
ing osmotic stress, AM, and variety on the dry weight 
of the roots and the shoots (Table 4). The osmotic stress 
reduced the dry weight of the root and shoot (Fig.  5). 
On the other hand, AM + decremented the adverse 
effect of osmotic stress and increased root dry weight. 
AM + treatment, at all the levels, led to a higher shoot 
and root dry weight as compared with AM- treatment. 
In general, AM improved the dry weight of chamomile 
at different osmotic stress levels. With the decrease the 
osmotic stress, shoot dry weight declined; thus, the high-
est shoot dry weight was obtained in PEG 0, AM + , and 
the Sor variety (Fig. 5).
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The correlation analysis (Fig.  6) showed a strong cor-
relation between different nutrients uptake and the 
dry weight of chamomile. The data under normal and 
osmotic stress conditions with and without AMF coloni-
zation were used for correlation analysis; for example, P 
and N concentrations of the shoot and Mg, Fe, and Cu 

levels of the roots showed a slightly positive and signifi-
cant correlation with shoot dry weight. In chamomile, the 
concentration of each nutrient indicated certain relations 
with the uptake of other nutrients, the majority of which 
were synergistic (positive); for example, a slightly posi-
tive and significant correlation was observed between the 
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levels
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Mg, P, N, Cu, and Fe nutrients of the shoot. Moreover, the 
Mg and P concentrations of the root, in addition to being 
highly correlated with each other, showed a positive cor-
relation with other nutrients uptake, such as N, Fe, and 
Cu of the shoots and roots. Even though the effects of the 
nutrients on each other were more synergistic, a signifi-
cant negative correlation was also observed between the 
shoot and root, and between K and N concentrations of 
the shoot.

Discussion
A soilless cultivation system with perlite as substrate 
was developed to study the osmotic stresses in a nutrient 
solution by non-mycorrhized and AM-colonized chamo-
mile varieties plantlets. The system was adequate for 
both chamomile varieties plantlet and its fungal associate 
F. mosseae. The results revealed that AM fungi inocula-
tion with chamomile varieties seedlings could improve 
osmotic stress tolerance of host plants under stress con-
dition, which is a very important piece of information for 
under-drought areas in the world. These findings indi-
cated that to reduce the unfavorable effects of osmotic 
stress on chamomile plant growth, the use of AM inocu-
lation ought to be considered as a biological method to 
alleviate chamomile stress.

The colonization rate of mycorrhizal fungi reflects the 
degree of infection and affinity between AM and the host 
plant. In the present study, under all the osmotic stresses, 
the AM colonization rate was over 57%, indicating a rela-
tively high affinity between the selected AM and cham-
omile varieties. Under the osmotic stresses, however, 
mycorrhizal colonization rate decreased significantly, 
which probably had an impact on the microbial activities, 
and affected the function of AM symbionts to a certain 
extent. This decrease in colonization was due to water 
shortage in the studied pots since environmental factors 
strongly affect colonization. The decrease may also be 
due to the low carbon availability in the host plants under 
drought stress, or because drought stress could have 
inhibited spore germination and hyphal growth in the 
rhizosphere soil (Chen et  al. 2020). Wu and Xia (2006) 
found that drought stress significantly decreased the 
mycorrhiza colonization of Glomus versiforme. They sug-
gested that arid and semiarid environments had adverse 
effects on mycorrhiza fungi development in host plants.

Under water-deficit stress, the uptake of several nutri-
ents declines due to reduced nutrient mass flow and dif-
fusion (Zhao et al. 2020). Our results, in line with those 
of other studies, showed that the osmotic stress caused 
by PEG impairs the uptake of micro and macronutrients 
(Mouradi et  al. 2016). Although AM improved nutrient 
levels and reduced the stress damage by expanding root 
depth and increasing soil access through their hyphae, 

the trends of the uptake, accumulation, and nutrient 
transfer varied in different species of plants and AM 
under different osmotic stress conditions. Several studies 
have indicated improved nutritional status of AM plants 
under the osmotic stress, such as N (Hashem et al. 2019), 
P (Zardak et  al. 2018), K (Zhao et  al. 2015), Cu, Zn, Fe 
(Abbaspour et al. 2012), and Mn (Wu and Zou 2009a, b). 
Since the extra radical mycelium transports water to the 
plant, mineral nutrients are also transported across the 
root-soil interface. Moreover, AM can affect the uptake 
of nutrients by producing different compounds; for 
instance, colonization of the roots by F. mosseae resulted 
in a significant increase in P uptake in the chamomile 
varieties of the plantlets as compared to the AM- plant-
lets. AM increased the amount of P absorbed by plants 
via increasing the activity and production of enzymes, 
such as phosphatase (Hu et al. 2013). One of the mineral 
nutrients that has been most studied in AM is P; that is 
because this nutrient, despite being rapidly absorbed by 
plants, has slow diffusion in the soil solution, which gen-
erates a depletion zone around roots (Bowles et al. 2016). 
When AM are formed, plant P absorption under limit-
ing conditions is improved. It was previously shown that 
AM not only improved P uptake, but also increased the 
‌uptake of N and nutrition in the plant through enhanc-
ing the hydraulic conductivity of the root under water-
deficit stress (Gholamhoseini et  al. 2013; Kong et  al. 
2014). Li et  al. (2014) reported that under water stress, 
shoot P concentration decreased while root P concentra-
tion increased. In terms of P nutrition in this study, apart 
from root P concentration of chamomile varieties under 
well-watered conditions, F. mosseae increased P concen-
tration in both varieties, but had a greater influence on 
Bod, specifically under drought conditions. The reason 
behind the increase in P concentration of roots under 
osmotic stress could be close the stomata, reduction in 
transpiration, imbalance of the active transport, and the 
disturbance in distribution; hence, P transfer from the 
root to shoot is reduced (Silva et al. 2009; Li et al. 2014).

Other compounds produced by AM are chelating 
agents, such as siderophores, which can ameliorate the 
uptake of micro-nutrients, like Zn and Fe in the plants 
(Dehghanian et  al. 2018). Although certain studies have 
shown that the increased concentration of P by myc-
orrhiza has a positive effect on the Zn concentration, 
another reason behind the increase in the amount of 
Zn in the roots and shoots of mycorrhizae-inoculated 
plants is the rise in the diffusion-limited process of Zn 
(Lehmann et al. 2014). with the increase in the osmotic 
stress, the pores will close, which reduces transpira-
tion and imbalances the active transport. Therefore, the 
transfer of nutrients reduces from the root to the shoot 
(Silva et  al. 2009) while increasing the K concentration 
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of the shoot by mycorrhizae rises stomatal conductance 
and improves the transport of nutrients from the roots 
to the shoots (Ruiz-Lozano et  al. 1995). In the current 
study, root and shoot concentrations of K were higher 
for AM + than those for AM- seedlings at all the osmotic 
stress levels. It seems as though the improved plant nutri-
tion by AM symbiosis allows cells to regulate and sepa-
rate flowing ions more effectively (Giri et  al. 2007). The 
nutrient imbalance due to osmotic stress is attributed to 
the effects of the stress on nutrient availability, competi-
tive uptake, transport, or partitioning within the plants. 
Accumulation of K in the plant under osmotic stress is 
a survival policy for the plant (Wang et al. 2013). In the 
present work, under osmotic stress, the concentration of 
K increased.

To counteract osmotic stress effects, plants via an 
endogenous defensive mechanism consisting of different 
enzymatic, including POD, CAT and PPO, which is the 
most widely distributed osmolyte in plants (Szabados and 
Savouré 2010). In our experiment, antioxidant enzymes 
increased significantly as a function of osmotic stress, 
when MF colonized the chamomile varieties of the plant-
lets. The increased activity of POD, CAT (Uzilday et  al. 
2012), and PPO (Thipyapong et al. 2004) enzymes under 
stress condition indicated their crucial role in enduring 
osmotic stress. CAT is considered as the most indispen-
sable enzyme for counteracting the hydrogen peroxide 
produced under stress conditions (Khanna-chopra and 
Selote 2007). POD is among the major H2O2-binding 
enzymes in cytosol and chloroplasts, whose levels also 
rapidly increases under water-deficit stress. Under such 
conditions, an increment was observed in the CAT and 
POD activities in diverse members of the Asteraceae 
family, such as Silybum marianum (Nouraei et al. 2018), 
Carthamus tinctorius L (Chavoushi et  al. 2019), and 
Helianthus annuus L (Ghobadi et al. 2013). In line with 
our results, other studies have also reported that AM 
increased the levels of POD and PPO (Meddich et  al. 
2015; Tyagi et al. 2017) in various plants under osmotic 
stress. One of the reasons of the increase in POD enzyme 
by AM could be the expression of its encoding genes 
when inoculated with AM (Mustafa et al. 2017). CAT is a 
metalloenzyme and its activity thus depends on the avail-
ability of metal nutrients (Armada et  al. 2016); mean-
while, in the present study, AM improved the uptake of 
metal nutrients. However, the effect of mycorrhizal inoc-
ulation on CAT enzyme levels under stress conditions 
was very different and depended on the plant species and 
even the species of mycorrhizal fungi (Wu and Zu 2009a, 
2009b). The increase in CAT activity by F. mosseae (Amiri 
et al. 2015) and other species was previously reported in 
many plants under osmotic stress (Aalipour et  al. 2020; 
Al-Al-Arjani et  al. 2020). Our results showed a higher 

activity of enzymes in AM + plants during osmotic stress 
with respect to non-mycorrhizal plants; that is to say 
that AM fungi induced further effective defense mecha-
nisms to protect the host from the detrimental effects of 
osmotic stress, and suggested a better resistance of colo-
nized plants against osmotic stress.

The most common osmolytes, such as total soluble sug-
ars and proline increased under osmotic stress, play a sig-
nificant role in regulating the osmotic potential of plants 
to prevent the cellular damages caused by oxidative stress 
(Khan et  al. 2015). Proline is an amino acid and can be 
stored in the cytoplasm, which in addition to osmotic 
regulation of the cell, detoxifies ROS, protects membrane 
integrity, and stabilizes proteins/enzymes. It also serves 
as one of the plant’s solutions capable of reducing stress 
damage (Ashraf and Foolad 2007). In the current paper, 
an increased leaf proline level was observed by F. mosseae 
under osmotic stress.

The increase in proline content can be assigned to the 
effect of AM on the increase in the N concentration of 
the plants under water-deficit stress (Augé 2001). High N 
levels in the plants under osmotic stress can significantly 
influence the genes involved in proline biosynthesis, 
which finally increase proline (Monreal et al. 2007; Wang 
et al. 2011). In another study, an increase was reported in 
the total soluble sugar under drought stress conditions, 
which is consistent with our results (Al-Arjani et  al. 
2020). AM increased the level of the total soluble sugar 
in plants as it increased the activity of sucrose-metabo-
lized enzymes, which had a positive and significant rela-
tionship with glucose, fructose, and sucrose contents 
(total soluble sugars) (Wu et  al. 2013). As observed, 
under water-deficit stress, plant growth decreased due 
to reduced osmotic regulation ability, disruption of the 
solute uptake system, disturbance of osmotic balance, 
and excessive energy requirements to produce osmolytes 
(Munns 1993). Based on the findings of this study, a loss 
was observed in the dry weight of the shoots, roots, and 
flowers of chamomile under water-deficit stress (Baghal-
ian et al. 2011). One of the causes of the reduced cham-
omile growth under stress may be the osmoregulation 
imbalance and the disruption in the salt absorption sys-
tem or the high level of energy required for counteracting 
the stress (Salehi et al. 2016).

The beneficial effects of AM symbiosis on plant growth 
parameters and biomass production under drought 
stress conditions using the same system already reported 
for several plant species (Chitarra et al. 2016; Tsai et al. 
2020). In our experiments, under osmotic stress condi-
tions, significantly higher values were detected for AM-
inoculated plants compared with those in the control 
plants in case of root and shoot dry weight of F. mosseae-
colonized plants. An increment was also detected in the 
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dry weight of the shoots, roots, and flowers of chamomile 
(Bączek et al. 2019) on account of the improved absorp-
tion, distribution of nutrients, the increment in proline, 
the total soluble sugars, and antioxidant enzymes by AM, 
which improved growth performance, lowered stress 
damage, enhanced the plant growth, and elevated dry 
weight (Al-Arjani et al. 2020). Chitarra et al. (2016) stated 
that AM mitigates drought stress by altering hormonal 
profiles, thereby affecting the physiology and develop-
ment of the host plant and increasing dry matter.

According to the results, the dry weight of chamo-
mile shoots, roots, and flowers reduced under drought 
stress (Baghalian et al. 2011). Under drought stress, plant 
growth declined due to the reduction in osmotic regula-
tion, osmotic imbalance, and the requirement of exces-
sive energy needed to cope with stress (the production 
of osmolytes and the disruption of the nutrient uptake) 
(Munns 1993). All nutrients play a vital role in plant 
growth; the nutrients (macro and micro) were positively 
correlated with the plant growth (Daur et al. 2011). The 
effects of each nutrient on the uptake of other nutrients 
are quite complex. According to the correlation shown in 
Fig. 6, the synergistic effect among numerous nutrients in 
chamomile reflects the diverse roles of these nutrients in 
the growth, yield, and uptake of other nutrients by cham-
omile; for example, sufficient Mg causes a proportional 
distribution of carbohydrates in the roots and shoots, 
promoting the chamomile root growth (He et  al. 2020). 
In addition, Mg may affect biomass production and plant 
growth through proper distribution of carbohydrates 
and the appropriate allocation of hydrocarbons to dif-
ferent parts of plants (Verbruggen and Hermans 2013) 
or improving plants’ access to N (Haberman et al. 2019) 
and iron (owing to its vital role in photosynthesis) (Dong 
et al. 2019) with an effective role in vegetative growth and 
ultimately, the accumulation of plant dry weight. This 
is consistent with a positive and high correlation in the 
dry weight of chamomile with the mentioned elements. 
According to the results, one of the most important 
causes of the reduced growth of chamomile under stress 
conditions is the disturbed nutrients uptake (Salehi et al. 
2016). The level of nutrients in the plant and the ability 
to uptake these nutrients are important factors in select-
ing the best cultivar under stress. In this regard, the Sor 
cultivar was almost superior to Bod in terms of both fac-
tors. On the other hand, the improved absorption and 
distribution of elements, as well as the increased proline, 
total soluble sugar, and antioxidant enzymes by mycor-
rhiza inoculation enhanced the growth while reducing 
the stress-induced damages (Al-Arjani et al. 2020). In line 
with previous reports (Bączek et  al. 2019), mycorrhiza 
increased the dry weight of shoots, roots, and flowers of 
chamomile.

Conclusions
Osmotic stress increased the levels of the total soluble 
sugar, proline, and the activity of antioxidant enzymes 
(CAT, POD, and PPO) in both chamomile varieties. The 
amount of these enzymes and osmolytes was higher in 
the Soroksári variety as compared with that in the Bodgol 
variety. Osmotic stress also reduced the uptake and trans-
port of several nutrients from the roots to the shoots, 
which resulted in the decreased concentration of certain 
nutrients, such as N, P, Fe, and Mn, in the shoots of both 
varieties. Such reduction in the nutrients in the plants 
declined the dry weight of the plants under osmotic 
stress; however, the dry weight of the shoots was higher 
in the Soroksári variety under the control treatment and 
osmotic potential of − 0.4 MPa as compared with that in 
the Bodgol variety. AM + reduced the negative effects of 
osmotic stress on the plants through increasing the nutri-
ent uptake, osmolyte contents, and activity of antioxidant 
enzymes.
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