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Phylogenomics identifies parents 
of naturally occurring tetraploid bananas
Yu‑En Lin1,2, Hui‑Lung Chiu3, Chung‑Shien Wu2 and Shu‑Miaw Chaw2*   

Abstract 

Background Triploid bananas are almost sterile. However, we succeeded in harvesting seeds from two edible 
triploid banana individuals (Genotype: ABB) in our conservation repository where various wild diploid bananas 
were also grown. The resulting rare offspring survived to seedling stages. DNA content analyses reveal that they are 
tetraploid. Since bananas contain maternally inherited plastids and paternally inherited mitochondria, we sequenced 
and assembled plastomes and mitogenomes of these seedlings to trace their hybridization history.

Results The coding sequences of both organellar genomic scaffolds were extracted, aligned, and concatenated 
for constructing phylogenetic trees. Our results suggest that these tetraploid seedlings be derived from hybridization 
between edible triploid bananas and wild diploid Musa balbisiana (BB) individuals. We propose that generating female 
triploid gametes via apomeiosis may allow the triploid maternal bananas to produce viable seeds.

Conclusions Our study suggests a practical avenue towards expanding genetic recombination and increasing  
genetic diversity of banana breeding programs. Further cellular studies are needed to understand the fusion 
and developmental processes that lead to formation of hybrid embryos in banana reproduction, polyploidization, 
and evolution.
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Background
Musaceae, the banana family, comprises approximately 
91 species generally assigned to three genera, Ensete, 
Musella, and Musa, although the taxonomic status of 
Musa has been controversial (Christenhusz and Byng 
2016). To date, four Musa sections are recognized: Aus-
tralimusa (2x = 20), Callimusa (2n = 2x = 18 or 20), 
Eumusa (2n = 2x = 22), and Rhodochlamys (2n = 2x = 22). 
Most edible bananas belong to Eumusa (Cheesman 1947; 
Debnath et al. 2019).

An estimated 137 million tons of bananas were pro-
duced in 2021, with export values exceeding 12.7 billion 
US dollars (FAOSTAT Statistical Database 2023). Profits 
from the banana industry are particularly important to 
low-income nations. Unfortunately, cultivated bananas 
are susceptible to numerous diseases, especially Fusar-
ium oxysporum f. sp. cubense tropical race 4 (Foc TR4) 
(Ploetz 2015). Developing resistant cultivars through 
hybridization is an important strategy for banana disease 
control (Siamak and Zheng 2018).

Banana cultivars are mainly derived from intra- or 
inter-specific hybridizations between M. acuminata (A 
genome or AA genotype) and M. balbisiana (B genome 
or BB genotype) (Cheesman 1947; Simmonds and Shep-
herd 1955). These crosses result in varieties/cultivars that 
can be diploid (2n = 2x = 22), triploid (2n = 3x = 33), and 
very rarely tetraploid (2n = 4x = 44). A common strategy 
for introducing disease resistance is to develop tetra-
ploids (4x) from 3x × 2x crosses. Triploid varieties can 
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produce unreduced female gametes that can develop into 
embryos once fertilized. Banana varieties from the Gros-
Michel (AAA), Mysore (AAB), Pome/Prata (AAB), Plan-
tain (AAB), and Pisang Awak (ABB) are examples of these 
(Bakry and Horry 1992). Many breeders have developed 
new disease-resistant bananas using this scheme (Jenny 
et al. 2003).

In nature, most polyploidization events involve a two-
step reduced-unreduced gamete fusion mechanism 
called the “triploid bridge” (Ramsey and Schemske 1998). 
This mechanism requires the production of tetraploids 
via triploid intermediates. First, a regular haploid (n, 
reduced) gamete fuses to a rare diploid (2n, unreduced) 
gamete to form a triploid individual, called a neo-trip-
loid. This neo-triploid plant then serves as a “bridge” 
that provides unreduced euploid (3n) gametes and thus 
can cross with reduced (n) gametes of diploid individuals 
to generate tetraploid offsprings (Ramsey and Schemske 
1998; De Storme and Geelen 2013; Hojsgaard 2018). The 
efficiency of triploid bridges depends on the successful 
production of unreduced euploid gametes from triploid 
parents (Köhler et al. 2010; Wang et al. 2016; Hojsgaard 
2018). Ramsey and Schemske (1998) observed that 
euploid gametes appear to be more frequent in nature 
than expected. To further interpret this phenomenon, 
Hojsgaard (2018) proposed that apomixis, characterized 
by the transient production of apomeiotic gametes, pro-
vides unreduced gametes and may increase the likelihood 
of triploid bridges.

Organelles are differentially inherited in bananas: plas-
tids are maternally inherited, while mitochondria come 
from fathers (Fauré et  al. 1994). This unusual cytoplas-
mic inheritance provides a helpful and convenient avenue 
for tracing hybrid banana origins (Carreel et  al. 2002; 
Boonruangrod et al. 2008; Wu et al. 2021). Over the past 
five years, we collected seeds from two edible triploid 
bananas (ABB) that grew next to various wild diploid 
bananas in the Musa germplasm repository at Taiwan 
Agricultural Research Institute (TARI). Two of the col-
lected seeds have germinated into seedlings.

This study aims to determine the ploidy of the seed-
lings germinated from the seeds of edible triploid ABB 
bananas and to clarify their parentage. The mechanism 
underlying tetraploid banana generation is also discussed.

Materials and methods
Sampling of Musa taxa
We collected 13 samples: three M. acuminata individu-
als (designated as AA-1, AA-2, and AA-3 because of their 
AA genotype), three M. balbisiana individuals (BB-1, 
BB-2, and BB-3 because of their BB genotype), three M. 
itinerans Thailand variants (Thai-1, Thai-2, and Thai-3), 
two triploid bananas of M. × paradisiaca (ABB-1 and 

ABB-2), and two seedlings of M. × paradisiaca (F1ABB-1 
and F1ABB-2) germinated from the seeds of the ABB-1 
and ABB-2 triploid bananas. We sampled three M. itin-
erans individuals because they grew next to the triploid 
bananas and successful hybridization between M. itin-
erans var. formosana and M. balbisiana was reported 
before (Chiu et  al. 2017). These 13 sampled individuals 
are growing well in the experimental farm of Musa germ-
plasm repository at TARI in Taichung city. Their speci-
mens are deposited in Biodiversity Research Museum, 
Academia Sinica (voucher numbers: Chaw1610–1622).

Plastome and mitogenome assembly and annotation
Two grams of flash leaves from each sampled individ-
ual were collected for DNA extraction using a modi-
fied CTAB method (Stewart and Via 1993) with 0.1% 
polyvinylpyrrolidone (PVP-40, Sigma). DNA libraries 
were constructed and then sequenced on an Illumina 
NovaSeq 6000 platform in Genomics Biotech Company 
(New Taipei City, Taiwan) to generate pair-end reads 
of 2 × 150 bp. We used Trimmomatic-0.39 (Bolger et  al. 
2014) to remove adapters and low-quality bases with the 
parameters of “ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 
LEADING: 3 TRAILING: 3 SLIDINGWINDOW: 4:15 
MINLEN: 36”. We used Getorganelle v1.7.7 (Jin et  al. 
2020) to assemble plastomes, and annotated the genomes 
using Plastid Genome Annotator (PGA) (Qu et al. 2019). 
Mitogenomic scaffolds were obtained using SPAdes 3.12 
(Bankevich et  al. 2012), followed by annotations using 
Geneious Prime 2023.2 (https:// www. genei ous. com/) 
based on a self-built database and manual correction.

Flow cytometry analysis
Fresh banana leaves were chopped with 250  µL isola-
tion buffer (200 mM Tris, 4 mM MgCl2-6H2O, and 0.5% 
Triton X-100) and mixed well. The mixture was filtered 
through a 40-μm nylon mesh. The filtered suspensions 
were incubated with DNA fluorochrome (50 μg/mL pro-
pidium iodide containing RNase A) for 30 min at 37 °C. 
The samples were analyzed using a CytoFLEX S Flow 
Cytometer (Beckman Coulter Life Science) in the Insti-
tute of Plant and Microbial Biology, Academia Sinica. For 
each examined banana, three independent replicates of 
analyses were conducted using M. acuminata (AA) as the 
reference.

Construction of mitochondrial and plastid trees
IQtree2 (Minh et  al. 2020) was used to construct mito-
chondrial and plastid phylogenetic trees based on the 
concatenation of 42 mitochondrial (3 rRNAs and 39 
protein-coding genes) and 79 plastid protein-cod-
ing genes, respectively. We set the “MFP” option that 
allowed IQtree2 to automatically evaluate the best-fit 
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substitutional model according to the Bayesian infor-
mation criterion. As a result, the best-fit models were 
TVM + F + R2 and TVM + F + R4 for constructing the 
mitochondrial and plastid trees, respectively. Branch 
support was assessed using 1000 non-parametric boot-
strap replicates. Trees were visualized in Mega 7 (Kumar 
et al. 2016).

Results and discussion
Ploidy determination using flow cytometry
As expected, our flow cytometry analysis indicates that 
diploids (AA) contain less DNA than triploids (ABB). 
Using the haploid genome (1C = 523  Mb) of the dip-
loid banana (D’Hont et  al. 2012) as the reference, we 
estimated the examined triploid banana’s genome to be 
636.7 ± 15.7 Mb. In contrast, the F1ABB banana’s genome 
was estimated to be 1098 ± 15.7  Mb, approximately 

double of the diploid (Figure S1). Therefore, the F1ABB 
banana is tetraploid derived from a triploid maternal par-
ent. This result also affirms that a successful syngamy has 
taken place in a triploid ABB banana.

Using mitochondrial and plastid trees to trace parentage
Fauré et  al. (1994) discovered that while mitochondria 
are paternally inherited in bananas, plastids come from 
the maternal parent. This facilitates tracing hybrid par-
entage in banana breeding programs (Carreel et al. 2002; 
Boonruangrod et al. 2008; Wu et al. 2021).

Our two tetraploid bananas, their triploid maternal 
parents, and all sampled M. balbisiana accessions con-
stitute a strongly supported clade in the mitochondrial 
tree (Fig. 1; BS = 100%). This clade is also observed in our 
plastid tree (Fig. 1; BS = 100%). Therefore, the two orga-
nelle trees strongly suggest that (1) the paternal origin of 

Fig. 1 Maximum likelihood phylogenomic trees based on concatenations of mitochondrial (left‑hand side) and plastid (right‑hand side) genes. 
Taxa sequenced in this study are underlined. Bootstrap values are shown along branches. Trees are condensed under a 50% majority rule
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the two tetraploid bananas (F1ABB-1 and F1ABB-2) is M. 
balbisiana, and (2) the tetraploid bananas’ plastids come 
from their triploid mothers, whose plastids were previ-
ously transmitted from M. balbisiana. This result also 
further supports the idea that the genotype of the two 
tetraploids is ABBB.

Apomeiosis‑associated female triploid gametes interpret 
formation of tetraploid bananas
Our flow cytometry analysis and phylogenomic results 
suggest that a successful syngamy occurred between 
maternal triploid ABB and paternal diploid M. balbisi-
ana. Hojsgaard (2018) proposed that triploid bridges are 
the chief contributors to polyploidization in the wild. If 
this is true, the triploid AAB banana has generated the 
euploid female gametes that went on to form the tetra-
ploid seeds we have investigated here.

Figure 2 illustrates the hypothetical mechanism under-
lying tetraploid banana formation via fusion of female 
triploid and male haploid gametes. Initially, we planted 
two triploid ABB banana cultivars in the TARI experi-
mental farm where several diploid bananas also grew. It 
was previously noted that the combination of divergent 
and unbalanced genome sets facilitates genomic shock 
leading to apomeiosis and generation of unreduced gam-
etes (Comai et  al. 2000; Adams and Wendel 2005; Tal-
ent and Dickinson 2007; Madlung and Wendel 2013; 
Hojsgaard 2018). Furthermore, the high fruiting rate of 

triploid bananas likely also contributes to the frequent 
occurrence of apomeiosis. However, this mechanism is 
not impossible in the case presented here because the 
two mother triploid bananas produced unreduced female 
gametes (2n = 3x = 33). In addition, we ruled out the self-
crossing as bananas are not self-pollinating plants. In 
our case, apomeiosis allowed the triploid ABB bananas 
to develop euploid female gametes, which subsequently 
fused with sperm released from haploid male pollen of 
the nearby diploid M. balbisiana. Together, they ulti-
mately produced seeds that germinated as tetraploid 
ABBB bananas (Fig. 2). This also demonstrates a feasible 
way to facilitate genetic variation and polyploidization in 
banana breeding programs.

Conclusion
The triploid ABB bananas studied here are a variety of 
Kluai Namwa bananas, commonly cultivated in Taiwan. 
Our molecular evidence demonstrates that F1ABB is 
a tetraploid hybrid of Kluai Namwa banana (ABB) and 
M. balbisiana (BB). We propose that the apomeiosis-
associated triploid bridge plays a key role in breeding of 
polyploid bananas, as exemplified by our viable tetra-
ploid seedlings. Specifically, our data not only clarify 
the parental origin of the seeds produced from triploid 
bananas but also present a feasible case for breeding of 
tetraploid banana hybrids via the female triploid bridge. 
Therefore, growing triploid and diploid accessions 

Fig. 2 A scheme showing formation of tetraploid bananas via fusion of female triploid and male haploid gametes
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together may expedite the discovery of new germplasm 
that can increase genetic resources for the banana indus-
try. Further cellular studies on the fusion and develop-
mental processes leading to hybrid embryos are needed 
to deepen our knowledge of banana reproduction, poly-
ploidization, and evolution.
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