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Abstract
As climate change intensifies, the frequency and severity of waterlogging are expected to increase, necessitating 
a deeper understanding of the cucumber response to this stress. In this study, three public RNA-seq datasets 
(PRJNA799460, PRJNA844418, and PRJNA678740) comprising 36 samples were analyzed. Various feature selection 
algorithms including Uncertainty, Relief, SVM (Support Vector Machine), Correlation, and logistic least absolute 
shrinkage, and selection operator (LASSO) were performed to identify the most significant genes related to the 
waterlogging stress response. These feature selection techniques, which have different characteristics, were used 
to reduce the complexity of the data and thereby identify the most significant genes related to the waterlogging 
stress response. Uncertainty, Relief, SVM, Correlation, and LASSO identified 4, 4, 10, 21, and 13 genes, respectively. 
Differential gene correlation analysis (DGCA) focusing on the 36 selected genes identified changes in correlation 
patterns between the selected genes under waterlogged versus control conditions, providing deeper insights 
into the regulatory networks and interactions among the selected genes. DGCA revealed significant changes 
in the correlation of 13 genes between control and waterlogging conditions. Finally, we validated 13 genes 
using the Random Forest (RF) classifier, which achieved 100% accuracy and a 1.0 Area Under the Curve (AUC) 
score. The SHapley Additive exPlanations (SHAP) values clearly showed the significant impact of LOC101209599, 
LOC101217277, and LOC101216320 on the model’s predictive power. In addition, we employed the Boruta as 
a wrapper feature selection method to further validate our gene selection strategy. Eight of the 13 genes were 
common across the four feature weighting algorithms, LASSO, DGCA, and Boruta, underscoring the robustness and 
reliability of our gene selection strategy. Notably, the genes LOC101209599, LOC101217277, and LOC101216320 
were among genes identified by multiple feature selection methods from different categories (filtering, wrapper, 
and embedded). Pathways associated with these specific genes play a pivotal role in regulating stress tolerance, 
root development, nutrient absorption, sugar metabolism, gene expression, protein degradation, and calcium 
signaling. These intricate regulatory mechanisms are crucial for cucumbers to adapt effectively to waterlogging 
conditions. These findings provide valuable insights for uncovering targets in breeding new cucumber varieties 
with enhanced stress tolerance.
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Introduction
Waterlogging is a critical environmental stress that 
impacts approximately 12% of the world’s arable land, 
resulting in significant crop yield losses, estimated at 
around 20% (Setter and Waters 2003). Due to ongoing 
global climate change, soil waterlogging is expected to 
increase, particularly in irrigated regions and during epi-
sodes of intense and irregular rainfall (Tian et al. 2021). 
Waterlogging stress presents a unique challenge for 
cucumber plants, despite their ability to form adventi-
tious roots that aid gas diffusion and enhance survival 
in low oxygen conditions (Barickman et al. 2019; Qi et al. 
2019). However, the precise physiological mechanisms 
governing the response of cucumber plants to waterlog-
ging stress are still poorly understood (Olorunwa et al. 
2022a). The induced morphological changes and shifts 
in photosynthesis and key metabolites have further 
highlighted the sensitivity of cucumber plants to water-
logging (Barickman et al. 2019; Olorunwa et al. 2022a, 
b). Consequently, developing tolerance to waterlogging 
stress in cucumber is an important area of research, with 
investigations into the underlying physiological mecha-
nisms being paramount (Olorunwa et al. 2022a). In this 
context, meta-analysis has emerged as a valuable tool 
in plant breeding as it identifies common patterns and 
trends across multiple studies, providing effective infor-
mation on breeding strategies (Zhang 2017). Although 
no specific meta-analysis has been conducted on water-
logging stress in cucumber plants, our current study pro-
vides insights into the genes and pathways involved in 
cucumber’s tolerance to waterlogging stress. Direct data 
merging involves combining the raw data from individual 
studies into a single dataset. It is often used in joint analy-
ses of high-dimensional gene expression data (Krepel et 
al. 2022). The major concern with the direct data merging 
approach is heterogeneity across studies (batch effects). 
Integrating transcriptomic data from multiple studies 
using supervised machine learning models can be a pow-
erful approach to capturing common biological signals 
while preserving the generalizability of the model, lead-
ing to more robust and reliable predictions (Maj et al. 
2019; Pashaiasl et al. 2016).

Feature selection is a crucial step in biological data 
analysis, aimed at reducing dimensionality and iden-
tifying significant genes. This process can be broadly 
categorized into three methods: filtering, wrapper, and 
embedded. Filtering methods evaluate features based on 
their intrinsic properties, such as correlation or statistical 
metrics, without involving learning algorithms, making 
them computationally efficient but potentially overlook-
ing feature interactions. Wrapper methods, on the other 

hand, utilize predictive models to assess different com-
binations of features, capturing interactions between 
features and often yielding high accuracy, although they 
are computationally intensive (Saeys et al. 2007). An 
example of a wrapper method is Boruta. Previous stud-
ies (Pashaei et al., 2019; Pashaei 2022) have shown that 
wrapper-based methods are highly effective for feature 
selection in genetic and genomic analyses. Embedded 
methods perform feature selection during model train-
ing, balancing efficiency with the ability to handle feature 
interactions while at the same time being far less com-
putationally intensive than wrapper methods, as seen 
in techniques such as LASSO (Least Absolute Shrinkage 
and Selection Operator) and tree-based methods such as 
Random Forest (RF) (Saeys et al. 2007).

Supervised machine learning models, in particular vari-
ous attribute weighting algorithms, have been used in 
gene selection. These algorithms encompass weight by 
principle component analysis, information gain, correla-
tion, rule, information gain ratio, chi-squared statistic, 
gini index, deviation, relief, and uncertainty (Karami et al. 
2019).

To delve deeper into the regulatory networks and key 
genes involved in the waterlogging response of cucum-
ber, we used the powerful technique of LASSO regression 
to analyze high-dimensional transcriptomic data (Xiong 
et al. 2019).

LASSO regression has been shown to be instrumental 
in identifying critical genes and regulatory networks in 
plant gene expression data, significantly improving our 
understanding of plant biology and plant breeding pro-
grams (Liu et al. 2011). In rice studies, LASSO regression 
has successfully uncovered key gene interactions asso-
ciated with salt tolerance phenotypes (Du et al. 2018), 
while in Arabidopsis thaliana, it was used to detect novel 
candidates associated with mucilage and pectin metab-
olism genes (Vasilevski et al. 2012). Furthermore, LASSO 
regression has been used to infer gene regulatory net-
works based on gene expression data in different eco-
types of Arabidopsis exposed to spaceflight microgravity 
conditions (Manian et al. 2021). In addition, transcrip-
tome analysis has been extensively used to study the 
gene expression changes in cucumber plants, shedding 
light on key regulatory events and molecular responses 
(Ando et al. 2012). By analyzing the regulatory relation-
ships between genes, differential gene correlation analy-
sis can help identify genes responsible for specific traits, 
which can be used in breeding programs to develop new 
plant varieties with desired traits (Cui et al. 2021). By inte-
grating various machine learning algorithms with meta-
analysis, the complexity and heterogeneity of data can 
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be effectively handled, thereby significantly improving 
the robustness and accuracy of the analysis (Panahi et al. 
2021). In this investigation, we conducted a comprehen-
sive analysis of three transcriptomic datasets to inves-
tigate the effects of waterlogging stress on cucumber 
plants. By integrating meta-analysis and machine learn-
ing techniques, we identified potential candidate genes 
in the response of cucumber plants to waterlogging 
stress. In addition, the differential gene correlation study 
allowed us to focus on key genes with significant roles in 
the adaptation of cucumbers to waterlogging stress. By 
gaining a deeper understanding of the molecular mecha-
nisms and key genes governing the response to water-
logging stress in cucumber, this study provides valuable 
insights for future breeding programs aimed at develop-
ing waterlogging tolerant cucumber varieties, thereby 
contributing to ensuring global food security in the face 
of waterlogging under changing climatic conditions.

Our research presents an innovative integration of 
multiple feature selection methods from different cat-
egories (filtering, wrapper, and embedded) to com-
prehensively analyze the response of cucumbers to 
waterlogging stress. By combining these methods, we 
leverage their respective strengths to achieve a more 
robust and comprehensive gene selection process, 
reducing bias. Additionally, we performed a meta-
analysis of three independent transcriptome datas-
ets (PRJNA799460, PRJNA844418, and PRJNA678740), 
which improves the generalizability and robustness of 
our results by accounting for variability under differ-
ent experimental conditions. Applying Differential Gene 

Correlation Analysis (DGCA) to the genes selected using 
this multi-method approach revealed new insights into 
the regulatory networks and interactions critical for 
the adaptation of cucumbers to waterlogging stress. It 
enabled a deeper understanding beyond merely listing 
differentially expressed genes. The significance of the 
identified genes was validated using the RF model, which 
achieved an accuracy of 100% and an AUC score of 1.0. 
SHAP values were used to interpret the model, highlight-
ing the functional importance of genes in the waterlog-
ging response. These genes provide valuable targets for 
future breeding programs to improve stress tolerance in 
cucumbers. We also employed the Boruta algorithm as a 
wrapper-based feature selection method to further vali-
date our gene selection strategy. The substantial overlap 
in the identified genes across these different approaches 
underscores the robustness and reliability of our gene 
selection strategy.

Materials and methods
The flowchart of the study to identify the key genes 
involved in the waterlogging stress response in cucum-
ber is presented in Fig. 1.

Data information
In this research, we used three datasets from SRA (https://
www.ncbi.nlm.nih.gov/sra), including PRJNA799460 (6 
samples), PRJNA844418 (18 samples), and PRJNA678740 
(12 samples) (Table 1).

Fig. 1 Flowchart of the study to find the key genes involved in the waterlogging stress response in cucumber
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Quality control and mapping
We used FastQC version 0.11.4 (Andrews 2010) to assess 
the quality of the RNA-seq data. FastQC results indicated 
that there was no need to pre-process or trim the origi-
nal expression data, as the quality of the raw sequencing 
data submitted to SRA was suitable for further analysis.

The reference genome for Cucumis sativus was 
obtained from the EnsemblPlants database in both FASTA 
and GFF formats. Quality-controlled reads were then 
aligned to the reference genome sequence of Cucumis 
sativus using Hisat2 (Kim et al. 2015).

Gene expression quantification
In this research, reading counts were performed using 
FeatureCounts. In addition, Hisat2 BAM files were used as 
input aligned files. The RNA-seq data used in this study 
were unstranded, as indicated by information from stud-
ies in the SRA database. Therefore, we chose to count 
unstranded reads and set the feature type to ‘exon’ to 
ensure that only lines in the provided GTF annotation file 
that matched the corresponding exon were counted.

Normalization
Normalization is a critical step in accurately comparing 
samples. The count data obtained from FeatureCounts 
was normalized using DESeq2 (Love et al. 2014). DESeq2 
median ratios are an appropriate choice for differential 

expression analyses and gene count comparisons 
between samples (Evans et al. 2018). This normalization 
approach takes into account the components of RNA 
composition and sequencing depth. According to the 
median ratio of gene counts relevant to the geometric 
mean per gene, the counts are divided by the sample size 
specified for each sample (Anders and Huber 2010).

Attribute weighting approaches
Attribute weighting methods were used to identify genes 
that discriminate between waterlogged and control con-
ditions. The subject feature, classified as “stress” and “con-
trol,” was used as the target or label variable. In addition, 
the normalized expression values of the genes were used 
as attributes and categorized as continuous data. The 
resulting dataset was then imported into RapidMiner Stu-
dio software (RapidMiner 7.0.001 Gmbh). The dataset is 
available in a supplementary file, sheet S1.

To decrease the complexity of the data and pinpoint 
the most critical genes linked to the response to water-
logging stress, we employed four distinct attribute 
weighting methods: Uncertainty, Relief, Correlation, and 
SVM, using a threshold of 0.90. A value nearing 1 indi-
cates that a particular gene plays a more significant role 
in discriminating between controls and waterlogging 
stress conditions. The genes were considered to be the 
primary differentiating genes. The contextual information 

Table 1 The transcriptomic raw data derived from studies investigating waterlogging stress in cucumber served as the primary 
dataset for the present analysis
Accession Reference Website Project 

samples
Treat-
ment 
samples

Treatment 
sample 
information

Control 
samples

Control 
sample 
information

PRJNA678740 Kęska et 
al. 2021

https://www.ncbi.nlm.nih.gov/bioproject/?term=P
RJNA678740

12 3 DH2 1xH 3 DH2 Ctrl

3 DH4 1xH 3 DH4 Ctr

PRJNA799460 https://www.ncbi.nlm.nih.gov/bioproject/?term=P
RJNA799460

6 3 WL 3 CK

PRJNA844418 https://www.ncbi.nlm.nih.gov/bioproject/?term=P
RJNA844418

18 3 Hypocotyl 
basic tissue of 
Zaoer-N(ME) 
cucumber 
under water-
logging stress 
for 48 h

3 Hypocotyl 
basal tissue of 
Zaoer-N(CME) 
cucumber 
control treat-
ment for 48 h

3 Hypocotyl vas-
cular bundle 
of Zaoer-N(VB) 
cucumber 
under water-
logging stress 
for 48 h

3 Hypocotyl vas-
cular bundles 
treated with 
Zaoer-N(CVB) 
cucumber 
control for 
48 h

3 Hypocotyl 
epidermis of 
Zaoer-N(SK) 
cucumber 
under water-
logging stress 
for 48 h

3 Hypocotyl 
epidermis of 
Zaoer-N (CSK) 
cucumber 
control 
treated for 
48 h

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA678740
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA678740
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA799460
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA799460
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA844418
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA844418
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about the attribute weighting techniques is provided as 
follows (RapidMiner Studio 7.6, https://docs.rapidminer.
com):

Uncertainty
The Weight by Uncertainty operator determines the 
weight of the attribute based on the label attribute, using 
the symmetric uncertainty concerning the class. Increas-
ing the weight of the attribute increases its relevance. The 
following formula is used to calculate relevance:

 

Relevance =2 ∗ (P (Class) − P (Class|Attribute))
/P (Class) + P (Attribute)

Relief
Relief stands out as the most important feature quality 
evaluation algorithm due to its simplicity and efficiency. 
The basic concept of Relief is to measure feature quality 
by assessing how well instances of the same and different 
classes can be distinguished when they are adjacent to 
each other. By using sampling examples and comparing 
the current feature value with the nearest examples from 
both classes, Relief determines the relevance of features. 
The resulting weights can be normalized to a range of 0 
to 1 by enabling the Normalized Weights parameters.

Correlation
By computing the correlation coefficient between two 
numerical variables, the correlation algorithm determines 
their statistical link. Pearson’s correlation coefficient, 
which measures the linear relationship between two vari-
ables, is the most widely used correlation coefficient. It 
has a range from − 1 to 1, with a value of -1 representing 
a perfect negative correlation, a value of 1 representing 
a perfect positive correlation, and a value of 0 represent-
ing no correlation. We used the Pearson correlation coef-
ficient to determine the linear relationship between gene 
expression levels and the condition (waterlogged vs. 
control).

SVM
Although SVM is fundamentally a classification tool, it 
can be instrumental in feature selection through its use 
of attribute weights, which are derived from the coeffi-
cients of the hyperplane in the SVM model. SVMs operate 
by finding a hyperplane that best separates the classes 
in the feature space. In a linear SVM, which is the focus 
of our analysis, the coefficients of this hyperplane can 
be interpreted as the importance of each feature (gene) 
in making the classification decision. Higher absolute 
values of these coefficients indicate a stronger influence 
of the corresponding feature on the decision bound-
ary. This property of SVM makes it suitable for feature 

selection by highlighting genes that are crucial in dis-
tinguishing between different classes such as stress vs. 
control conditions in cucumber plants under waterlog-
ging stress. Combining SVM with other feature selection 
methods can enhance the robustness and relevance of 
the selected features (Guyon et al. 2002; Sudha George 
and Raj 2014). By comparing the features selected by 
SVM with those identified through other techniques such 
as LASSO, Relief, Uncertainty, and Correlation, we can 
achieve a more comprehensive understanding of feature 
relevance, ensuring that the selected genes are not only 
statistically significant but also consistently influential 
across different methods. By focusing on genes identi-
fied through the SVM weights and corroborated by other 
methods, we can streamline the analysis and enhance the 
interpretability of the model.

The number of retained features for each method was 
determined based on user-defined thresholds of feature 
importance scores (> 0.90) to ensure consistency and 
maintain the highest relevance in the final feature set.

Least absolute shrinkage and selection operator (LASSO)
LASSO is a type of regression analysis that performs both 
variable selection and regularization to enhance the pre-
diction accuracy and interpretability of the resulting sta-
tistical model. It is particularly useful for datasets with a 
large number of features, as it can select a subset of the 
most important features. In the context of gene selection, 
LASSO helps identify the most relevant genes associated 
with a particular condition by shrinking the coefficients 
of less important genes to zero, effectively excluding 
them from the model.

To identify candidate genes that have a consistent cor-
relation with waterlogging stress, we employed the R 
package glmnet (version 4.1.4) (Hastie et al. 2021) to train 
a logistic LASSO regression model using the DEGs (Dif-
ferentially Expressed Genes) profile. This algorithm per-
formed feature selection by shrinking the coefficients of 
less important features to zero, thereby retaining only the 
most significant genes. In our study, the LASSO regres-
sion model was fitted to a dataset containing 20,144 
genes. Through 10-fold cross-validation, the most suit-
able value for λ was found. This resulted in the identifica-
tion of genes with non-zero coefficients, indicating their 
significant role under waterlogging stress conditions in 
cucumber.

Differential Gene correlation analysis (DGCA)
In addition, we conducted a DGCA to investigate fur-
ther the genes selected by both the attribute weight-
ing algorithms and the LASSO regression method. This 
analysis aimed to identify changes in correlation pat-
terns between genes under waterlogged versus control 

https://docs.rapidminer.com
https://docs.rapidminer.com
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conditions, providing deeper insights into the regulatory 
networks and interactions among the selected genes.

DGCA provides a variety of approaches to calculate and 
examine differences in gene correlations between differ-
ent conditions (McKenzie et al. 2016). To investigate the 
regulatory relationships between genes in control and 
abiotic stress conditions, we used the DGCA package in 
R studio. In this method, we transformed correlation coef-
ficients into z-scores and determined p-values to assess 
differential gene correlation (McKenzie et al. 2016).

To normalize the z-scores, we used the Fisher z-transfor-
mation formula:

 
z = atanh (r) =

1

2
loge

(
1 + r

1− r

)

where ‘r’ is the correlation coefficient of the sample, ‘loge’ 
is the natural logarithm function, and ‘atanh’ is the arc-
tangent hyperbolic function. The variance of the z-scores 
depends on the type of correlation, whether Pearson’s 
correlation (rp) or Spearman’s correlation (rs) (Fieller et al. 
1957). The variance of the normalized distribution can be 
calculated using the formula, where ‘n’ is the sample size 
of the correlation:

 
var(rp) = 1

n−3  or var(rs) = 1.06n−3

Next, we computed the difference in z-scores (dz) 
between the control and abiotic stress conditions:

 
dz = 

(z1−z2)√
|S2

z1
− S2

z2| 
where S2

z1 and S2
z2 represent the variances of the z-scores 

in the control and abiotic stress conditions, respectively. 
Using dz, a two-tailed p-value for the standard normal 
distribution was calculated, and gene pairs were ranked 
according to their differential correlation values.

Validation and interpretation of the selected genes
The genes that were significantly paired-correlated 
between control and waterlogging stress using DGCA 
analysis were selected for validation. The software R (ver-
sion 4.1.2) and the R packages ranger (version 0.14.1) 
were employed for RF classification (Wright and Ziegler 
2015). In this study, we selected the RF classifier instead 
of utilizing SVM. Firstly, SVM does not inherently provide 
feature importance measures in the way that tree-based 
models such as RF do. RF provides a measure of feature 
importance, which can be valuable for understanding 
which variables contribute most to the predictions. This 
is particularly useful in domains such as medical research 
and environmental studies (Adugna et al. 2022). Further-
more, RF typically requires less parameter tuning than 
SVM, making it easier to use and implement. The decision 

tree structure of RF also provides some level of interpret-
ability (Adugna et al. 2022).

In contrast, SVM can handle non-linear data through 
kernel tricks (Sunitha and Raju 2021). RF naturally han-
dles non-linear relationships and interactions between 
features without requiring explicit transformation (Hong 
and Lynn 2020). Moreover, RF is generally less prone to 
overfitting compared to SVM, especially when dealing 
with high-dimensional data or noisy datasets (Lachaud et 
al. 2023).

Additionally, RF is an ensemble learning method, which 
means it combines multiple decision trees to make pre-
dictions. This approach often leads to improved accuracy 
and robustness compared to single-model classifiers 
like SVM (Natarajan et al. 2023). RF has been successfully 
applied in various bioinformatics studies for gene selec-
tion and classification. For example, Pashaei et al. (2017) 
showed that the RF classifier performs much faster than 
the SVM classifier in detecting the splice sites in the 
human genome.

The number of trees was set to 100 for the model build-
ing. Machine learning (ML) models, which are considered 
as black boxes, can be interpreted using SHAP (SHapley 
Additive exPlanations) value to explain different ML mod-
els (Bingol and Brüschweiler 2015). Therefore, we cal-
culated the SHAP value and the importance of ranking 
genes from the classification models using “shapviz” ver-
sion 0.9.1 in R.

In addition, we also employed the Boruta algorithm as 
a wrapper-based feature selection method to further vali-
date our gene selection strategy. The Boruta algorithm 
is an all-relevant feature selection method designed 
to identify the most important features in a dataset by 
comparing the importance of original attributes with 
the importance achievable at random. This method itera-
tively removes features that are statistically less relevant, 
thereby retaining only the most significant variables 
(Kursa and Rudnicki 2010).

Using the R package Boruta (version 8.0.0), we trained 
the model on DEGs matrix. The algorithm performed 100 
iterations to ensure robust feature selection, providing 
a comprehensive measure of attribute importance. The 
final selection of features was refined using the ‘Tentati-
veRoughFix’ function. This process enabled us to obtain 
a clear understanding of which feature genes were most 
relevant to the waterlogging stress condition.

Results
Weight by uncertainty
The uncertainty algorithm revealed that four genes 
exceeded a threshold of 0.90. As shown in Table  2, 
these genes were LOC101221250, LOC101209599, 
LOC101216320, and LOC101206172.
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Weight by relief
The Relief algorithm identified four genes with values 
greater than 0.90. As depicted in Table  2, these genes 
were LOC101213801, LOC101205971, LOC101214385, 
and LOC101203449.

Weight by correlation
The Correlation algorithm revealed that twenty-one 
genes had values exceeding 0.90. As shown in Table  2, 
these genes were LOC101213801, LOC101210665, 
LOC101205805, LOC101217277, LOC101213872, 

LOC101222503, LOC101206239, LOC101206201, 
LOC101212424, LOC101212625, LOC101203084, 
LOC101204590, LOC101210747, LOC101214385, 
LOC101213580, LOC116403322, LOC101205431, 
LOC101210491, LOC105435194, LOC101204309, and 
LOC101205898.

Weight by SVM
The SVM algorithm indicated that ten genes had val-
ues surpassing 0.90. As mentioned in Table  2, these 
genes were WRKY34, LOC105435136, LOC101222803, 
LOC101213580, LOC101212625, LOC101206142, 
LOC101223041, LOC101202985, LOC101207749 and 
LOC116406191.

LASSO gene selection
The LASSO regression model was fitted to a dataset con-
taining 20,144 genes (Fig. 2a). Through 10-fold cross-vali-
dation (Fig. 2b), the most suitable value for λ was found to 
be 0.03858. Subsequently, 13 genes with non-zero coef-
ficients were identified under waterlogging stress condi-
tions in cucumber. These genes include LOC101212625, 
LOC101213580, LOC101213801, LOC101222503, 
LOC101205805, LOC101205000, LOC101203084, 
LOC101214385, LOC101210491, LOC101206239, 
LOC101210665, LOC101205431 and LOC101206142.

Differential Gene correlation analysis (DGCA)
In this study, a pairwise analysis was performed on 
cucumber plants subjected to both control and water-
logging stress conditions. We focused on examining the 
variation in the correlation between each pair of genes, 
considering a total of 36 genes selected using LASSO 
regression and attribute weighting algorithms (supple-
mentary file, sheet S2). This resulted in a total of 630 
pairwise comparisons (Supplementary file, sheet S3). The 
p-values for 117 differential gene correlation (DGC) pair-
wise comparisons were below 0.01, indicating a signifi-
cant alteration in the correlation between genes under 
control and waterlogging stress conditions. For further 
investigation, we provided a list of the top ten differen-
tial gene pairs under both control and waterlogged stress 
conditions (Table 3).

The values of individual genes from the top ten sig-
nificantly correlated gene pairs identified by differential 
gene correlation analysis (DGCA) across conditions are 
plotted in Fig. 3.

The differentially correlated gene pairs were then 
grouped into four categories. In the control condition, 
seven gene pairs showed no correlation, whereas they 
showed a positive correlation in the waterlogging stress 
condition (0/+). In the control condition, there was a 
positive correlation between one pair of genes, but this 
correlation was not observed in the waterlogging stress 

Table 2 List of genes identified by four attribute weighting 
algorithms, including uncertainty, relief, correlation, and SVM, 
with a cut-off value of 0.90
Attribute weighting algorithm Gene symbol Weight
Correlation LOC101213801 1

LOC101210665 0.981792

LOC101205805 0.976468

LOC101217277 0.965222

LOC101213872 0.961903

LOC101222503 0.95507

LOC101206239 0.950225

LOC101206201 0.947782

LOC101212424 0.946504

LOC101212625 0.946377

LOC101203084 0.936201

LOC101204590 0.929242

LOC101210747 0.921718

LOC101214385 0.919868

LOC101213580 0.9143

LOC116403322 0.91381

LOC101205431 0.913398

LOC101210491 0.903276

LOC105435194 0.902187

LOC101204309 0.901909

LOC101205898 0.900742

SVM WRKY34 1

LOC105435136 0.955122

LOC101222803 0.929876

LOC101213580 0.927133

LOC101212625 0.926384

LOC101206142 0.922183

LOC101223041 0.908447

LOC101202985 0.908386

LOC101207749 0.905523

LOC116406191 0.902036

Uncertainty LOC101221250 1

LOC101209599 0.956375

LOC101216320 0.931761

LOC101206172 0.910819

Relief LOC101213801 1

LOC101205971 0.964735

LOC101214385 0.925444

LOC101203449 0.924483
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condition (+/0). One pair of genes showed a negative cor-
relation in the control condition, but a positive correla-
tion in the waterlogging stress condition (-/+). Another 
pair of genes showed a positive correlation in the con-
trol condition but exhibited a negative correlation in the 
waterlogged stress condition (+/-) (Fig. 4).

Validation and interpretation of the selected genes
We implemented RF, a highly efficient machine learning 
algorithm, to construct the classification model. The accu-
racy and area under the curve (AUC) of the RF model were 
100% and 1.0, respectively, as shown in the ROC (Fig. 5a). 
The out-of-bag (OOB) prediction error was estimated to 

be 0.0017. To visually illustrate how the selected genes 
affect the model, we used SHAP to differentiate between 
normal and waterlogged stress in cucumber. Figure  5b 
illustrates the average absolute SHAP value and signifi-
cance of the 13 genes in our model. The vertical axis of 
the gene ranking represents the significance of the genes 
within the model. The SHAP value, shown on the x-axis, is 
an index used to quantify the impact of a particular gene 
within the model.

LOC101209599 followed by LOC101217277, 
LOC101216320, LOC101221250, and LOC101205805 
were the most important genes in the model and may 
be associated with waterlogging response in cucumber. 

Table 3 Top ten Differential Gene Correlation Analysis (DGCA) comparisons from a collection of 36 genes selected using LASSO 
regression and attribute weighting algorithms. The first two columns show the ID of paired genes, the columns third and fourth are 
the correlation and p-value of the pair genes under control, the fifth and sixth columns show the correlation and p-value of the paired 
genes under waterlogging stress, the seventh column shows the change in Z-score, indicating the change in the correlation between 
gene pairs, and the eighth column shows the classes of differentially correlated gene pairs
Gene1 Gene2 control_cor control_pVal waterlogging_cor waterlogging_pVal zScoreDiff pValDiff Classes
LOC101209599 LOC101221250 -0.00583 0.981689 0.985479 9.50E-14 6.750255 1.48E-11 0/+

LOC101209599 LOC101216320 -0.28072 0.259164 0.971161 2.20E-11 6.574823 4.87E-11 0/+

LOC101205971 LOC105435136 -0.71511 0.00085 0.807402 5.10E-05 5.524036 3.31E-08 -/+

LOC101204590 LOC101207749 0.708786 0.000991 -0.8021 6.22E-05 -5.44772 5.10E-08 +/-

LOC101216320 LOC101221250 0.392644 0.107014 0.983571 2.54E-13 5.427623 5.71E-08 0/+

LOC101205805 LOC101217277 -0.46192 0.053628 0.88249 1.26E-06 5.166829 2.38E-07 0/+

LOC101206172 LOC101209599 0.010636 0.966589 0.950915 1.45E-09 5.013351 5.35E-07 0/+

LOC101203084 LOC101206142 -0.36789 0.133089 0.893961 5.74E-07 5.004244 5.61E-07 0/+

LOC101204590 LOC101221250 -0.21779 0.385305 0.916726 8.93E-08 4.900632 9.55E-07 0/+

LOC101203449 LOC101216320 0.922398 5.17E-08 -0.16899 0.502642 -4.86239 1.16E-06 +/0

Fig. 2 Feature selection using the LASSO logistic regression model by 10-fold cross-validation at lambda.1se. (a) The path of variable coefficient against 
the L1 Norm of the total coefficient vector as λ varies with the number of` non-zero coefficients represented on the axis above (b) LASSO coefficients of 
13 significant genes in waterlogging in cucumber (vertical lines related to lambda.1se)
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On the other hand, LOC101203449 was shown to have 
no effect on the model. Also, genes LOC105435136 and 
LOC101205971, with low SHAP values have low contribu-
tion in the model.

The Boruta algorithm confirmed 106 genes as impor-
tant in the waterlogging stress response (supplementary 
file, sheet S4). Examining the overlap between these 106 
genes and the 36 genes identified by the four feature 
weighting algorithms and LASSO, we found that 21 genes 
were common (supplementary file, sheet S5). Addition-
ally, eight of the 106 genes overlapped with 13 genes 

identified by the four feature weighting algorithms, 
LASSO, and the gene correlation analysis (DGCA) (supple-
mentary file, sheet S6).

Discussion
Waterlogging is a widespread abiotic stress that poses a 
significant threat to the productivity of crops, including 
cucumber (Cucumis sativus), an important agricultural 
crop. With the frequency and severity of waterlogging 
expected to increase with climate change, understand-
ing the response of cucumber to this stress is critical to 

Fig. 3 The values of individual genes from the top ten significantly correlated gene pairs identified by Differential Gene Correlation Analysis (DGCA) 
across conditions are plotted
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ensure crop resilience and sustainability. Analysis of 
sequencing data yields a large number of genes, mak-
ing it difficult to relate these high-dimensional datasets 
to specific biological phenomena and their underlying 
mechanisms. To address this problem, we used the LASSO 
method, which combines ridge regression and feature 
selection, to identify a subset of informative genes associ-
ated with waterlogging stress in cucumber plants.

Looking at the regulatory relationships between genes 
is also very important for building models that can pre-
dict what will happen in biological systems. Using DGCA, 
we have been able to learn more about how gene-gene 
relationships change in different situations of interest. 
This method not only detects crucial changes in gene 
regulatory relationships, but also facilitates the investiga-
tion of unexplored signaling pathways, biomarkers and 

Fig. 4 The top ten significantly correlated pairs of genes (p < 0.001) were identified through Differential Gene Correlation Analysis (DGCA). The X and Y 
axes indicate the gene expression values, and each point represents one sample. Colored lines and shaded areas represent the linear regression lines and 
their respective 95% confidence intervals for each control and stress condition
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targets in complex biological systems. In our research, 
we focused on genes identified using LASSO regression 
and weighting techniques and applied DGCA to inves-
tigate differences in gene correlations between control 
and waterlogging stress conditions. The results revealed 
13 genes that showed a significant change in correlation 
with each other under waterlogging stress compared to 
the control condition (Table 4, supplementary file, sheet 
S7).

Out of ten gene pairs, seven showed a decrease in cor-
relation after waterlogging, while one showed a decrease 
in correlation. Two gene pairs are inversely correlated in 
the control compared to the stress condition. As shown 
in Table 3, three genes, including protein ALP1-like, Kelch 
repeat-containing protein, and ABC transporter G family 
member 24-like were found to have a positive correlation 
with MYB62 in the waterlogging stress condition but not 
in the control condition.

MYB62, which is a member of the MYB gene family, 
stands out among the genes identified. It is widely rec-
ognized for its involvement in plant development and 
responses to various stresses such as drought and water-
logging (Borrego-Benjumea et al. 2020; Juntawong et 
al. 2014; Mmadi et al. 2017; Wang et al. 2023). Previous 
studies have suggested a role for MYB genes in regulat-
ing stress responses in various plant species, and a study 
on sesame in particular highlighted their potential to 
improve stress tolerance in crops (Mmadi et al. 2017). In 
cucumber, MYB transcription factors were shown to be 

Table 4 List of 13 genes that are included in the top ten gene 
pairs with the most significant changes in the correlation 
between the two conditions
Gene symbol Ensembl gene 

ID
Entrez gene 
ID

Gene description

LOC101203084 Csa_6G190460 101,203,084 U-box domain-con-
taining protein 33

LOC101205805 Csa_7G329330 101,205,805 auxin response fac-
tor 18

LOC101206142 Csa_6G495030 101,206,142 formamidase

LOC101217277 Csa_3G838720 101,217,277 probable galactinol–
sucrose galactosyl-
transferase 5-like

LOC101204590 Csa_1G569360 101,204,590 uncharacterized

LOC101216320 Csa_1G666980 101,216,320 kelch repeat-
containing protein 
At3g27220

LOC101206172 Csa_003992 101,206,172 ABC transporter 
G family member 
24-like

LOC101209599 Csa_014188 101,209,599 transcription factor 
MYB62

LOC101221250 Csa_1G481730 101,221,250 protein ALP1-like

LOC101203449 Csa_1G569280 101,203,449 bidirectional sugar 
transporter SWEET16

LOC101205971 Csa_4G335240 101,205,971 acid phosphatase 1

LOC105435136 Csa_001144 105,435,136 AAA-ATPase 
At3g28580

LOC101207749 Csa_1G589650 101,207,749 IQ domain-contain-
ing protein IQM1

Fig. 5 Genes obtained by LASSO regression and value attribute weighting algorithms (13 genes) were used to validate the effectiveness of gene selec-
tion using the Random Forest model (a). The importance ranking of the 13 selected genes according to the mean (|SHAP value|) and SHAP value of the 
features is shown (b)
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differentially expressed under waterlogging stress (Qi et 
al. 2012). Despite the evidence supporting the involve-
ment of MYB genes in stress responses, there is currently 
no direct information on the relationship between MYB62 
and waterlogging in cucumber. The results of our investi-
gation suggest that MYB62 may have an influence on the 
response of cucumber to waterlogging stress. However, 
further research is required to gain a full understanding 
of its precise role and regulatory mechanisms in this par-
ticular environment.

With regard to the ALP1-like protein, despite the lim-
ited information available, we can infer a possible role 
based on its similarity to the ANTAGONIST OF LIKE HET-
EROCHROMATIN PROTEIN 1 (ALP1) gene. ALP1 has been 
shown to disrupt gene silencing activity by antagoniz-
ing the function of POLYCOMB REPRESSIVE COMPLEX 2 
(PRC2), a protein complex involved in the repression of 
gene expression through histone methylation (Liang et 
al. 2015). Additionally, PRC2, by increasing H3K27me3 
levels in the promoter of ABI4, represses the expression 
of ABI4 (Godwin and Farrona 2022). We hypothesize that 
up-regulation of ALP1-like protein under waterlogged 
stress conditions could result in reduced PRC2 activity, 
which would subsequently lead to increased expression 
of specific genes, possibly including ABI4, and influenc-
ing lateral root development. Cucumber’s weak water 
absorption ability and less established root system make 
it susceptible to waterlogging stress (Pan et al. 2021), fur-
ther emphasizing the importance of understanding the 
role of ALP1-like protein and its potential contribution to 
stress tolerance.

Kelch repeat-containing proteins are a subfamily of 
F-box proteins that are found almost exclusively in plants 
(ul Hassan et al. 2015; Wei et al. 2021). The role of Kelch 
repeat-containing protein in waterlogging is not fully 
understood. However, a study on soybean roots under 
waterlogging stress revealed that a Kelch repeat-con-
taining F-box family protein was among the differentially 
expressed genes (Alam et al. 2010). Another study on sug-
arcane found that a Kelch repeat-containing F-box-like 
protein was involved in protein degradation in response 
to waterlogging (Khan et al. 2014). Kelch repeat F-box 
(KFB) proteins, including Kelch repeat-containing pro-
teins, are involved in ubiquitin-mediated protein degra-
dation through selective binding of target proteins (Tang 
et al. 2022). Waterlogging can accelerate the degradation 
of proteins and chlorophyll in leaves, which reduces the 
capacity of leaves to photosynthesize and can lead to leaf 
senescence and yellowing (Pan et al. 2021; Stieger and 
Feller 1994). Therefore, it is possible that the Kelch repeat-
containing protein plays a role in protein degradation 
and other cellular processes in cucumber in response to 
waterlogging stress.

ABC transporters, particularly the ABCG subfamily, 
have been identified as crucial contributors to maintain-
ing plant homeostasis and responding to abiotic stresses 
(Dahuja et al. 2021; Wu et al. 2022). Our results suggest 
that ABC transporter G family member 24-like is among 
the genes with altered correlations under waterlogging 
stress. Although its specific function in the response of 
cucumber to waterlogging is still unclear, we can gain 
insights from studies in other plant species. For example, 
mutations in the ABCG5 gene have been shown to affect 
growth and responses to waterlogging in plants (Do et al. 
2021). Further studies are needed to determine the pre-
cise role of the ABC transporter G family member 24-like 
in cucumber under waterlogging stress.

The identified acid phosphatase is an intriguing candi-
date owing to its potential role in enhancing plant phos-
phorus acquisition. The increased uptake of phosphorus 
under waterlogging stress and its involvement in miti-
gating abiotic stresses, including drought and salinity, 
in plants has been documented (Bechtaoui et al. 2021; 
Rubio et al. 1997). This suggests that inorganic phos-
phate may have a critical function in mitigating waterlog-
ging stress in cucumber, ultimately contributing to stress 
alleviation.

We identified the AAA-ATPase gene as a potential 
player in the response to waterlogging stress. Notably, 
a previous investigation conducted by (Xu et al. 2018) 
has substantiated the potential role of the AAA-ATPase 
gene, CsARN6.1, in cucumber in waterlogging tolerance 
and improving adventitious root formation. Under water-
logged conditions, transgenic cucumber plants carrying 
the CsARN6.1Asp allele from Zaoer-N exhibited a signifi-
cant increase in the number of adventitious roots com-
pared to the wild-type cucumbers expressing the allele 
from Pepino. These findings suggest that the AAA-ATPase 
gene CsARN6.1 plays a crucial role in promoting adventi-
tious root formation and improving waterlogging toler-
ance in cucumber (Xu et al. 2018). The validated roles of 
several identified genes, including AAA-ATPase, further 
confirm the credibility and robustness of our research 
findings.

Another gene that was identified in our study is the IQ 
domain-containing protein IQM1, which exhibited the 
upregulation in response to waterlogging stress. IQM1, 
a calmodulin-binding protein, has been reported to be 
associated with the stomatal movement in Arabidopsis 
(Zhou et al. 2012). In particular, waterlogging stress has 
been shown to induce an increase in cytosolic calcium 
levels in plants (Li et al. 2022). Consequently, the bind-
ing of calcium ions to calmodulin induces conformational 
changes, facilitating its interaction with target proteins 
involved in various cell signaling events (Tan et al. 2019). 
Based on these findings, it is plausible to hypothesize 
that calmodulin-binding proteins, including IQM1, may 
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actively contribute to the cucumber response mecha-
nisms to waterlogging stress.

In our study, the identification of auxin response fac-
tor 18 contributes to our understanding of the response 
of cucumber to waterlogging stress. Notably, previous 
research by (Qi et al. 2012) highlighted the up-regulation 
of two additional auxin response factors, auxin response 
factor 3 and auxin response factor 2, in waterlogged 
cucumber roots. This suggests that auxin may be a crucial 
signal mediating the plant defense against waterlogging 
stress. ARFs (Auxin Response Factors) are known as tran-
scriptional activators of early auxin response genes, and 
they play a crucial role in regulating lateral root forma-
tion in Arabidopsis thaliana (Okushima et al. 2007). In our 
study, reduced expression of galactinol-sucrose galactos-
yltransferase 5-like protein and auxin response factor 18 
was observed under waterlogging stress, accompanied 
by a positive correlation between these genes. The func-
tion of galactinol-sucrose galactosyltransferase 5-like 
protein (SEED IMBIBITION 1-LIKE; Raffinose synthase 5) is 
to catalyze the synthesis of raffinose. Additionally, there 
is evidence that some ARFs can regulate the expression 
of genes involved in sugar metabolism (Yuan et al. 2019). 
One study suggests that auxin signaling components, 
including ARFs, may play a role in regulating the expres-
sion of raffinose synthase (Han et al. 2020). These findings 
highlight the multifaceted involvement of auxin and its 
associated transcriptional activators, the Auxin Response 
Factors (ARFs). They may not only serve as a crucial sig-
nal mediating the plant’s defense against waterlogging 
stress but also play a significant role in regulating lateral 
root formation. ARFs also appear to influence the gene 
expression related to sugar metabolism, such as galac-
tinol-sucrose galactosyltransferase 5-like protein. When 
plants experience stress, they reprogram their metabo-
lism and gene expression to divert energy sources from 
growth-related biosynthetic processes to defense, accli-
mation, and adaptation. Sugar metabolism is an impor-
tant component of energy signaling in plants, as sugars 
serve as important energy sources for growth and devel-
opment (Baena-González 2010; Nägele et al. 2022). 
Therefore, regulation of sugar metabolism appears to be 
a critical factor in enabling cucumber plants to respond 
and adapt to stressful conditions effectively.

Formamidase, another gene identified in this study, 
has been suggested to be involved in enhancing abiotic 
stress tolerance in plants For example, a study in barley 
showed that when the plant was exposed to heat and 
drought, it exhibited changes in gene expression, includ-
ing genes associated with formamidase (Mahalingam et 
al. 2022). In Arabidopsis, two recently reported formam-
idase-like proteins, IAMH1 and IAMH2, have been linked 
to the conversion of formamide to formate, which is 

involved in responses to abiotic stress (Moya-Cuevas et al. 
2021).

The U-box domain-containing protein 33, discov-
ered in this research, functions as an E3 ubiquitin ligase 
and is involved in the degradation of group VII ethylene 
response factor (ERFVII) transcription factors, which are 
associated with hypoxia responses in plants. Decreased 
expression of the E3 ligase leads to increased expression 
of hypoxia-associated genes and altered seed germina-
tion in waterlogged transgenic plants (Mendiondo et 
al. 2016). The oxygen sensor reporter protein MCGGAIL-
GUS also increases in waterlogged transgenic plants with 
reduced expression of E3 ligase (Mendiondo et al. 2016). 
These results suggest that manipulation of E3 ligase 
expression affects the stability of ERFVII transcription fac-
tors and their downstream targets, leading to increased 
tolerance to waterlogging in barley (Mendiondo et al. 
2016). In our study, the expression of U-box domain-
containing protein 33 was found to be downregulated 
under waterlogging. It can be concluded that reducing 
the expression of U-box domain-containing protein 33, 
which acts as an E3 ubiquitin ligase, leads to increased 
expression of genes associated with hypoxia and stress 
response to waterlogging in cucumber plants.

Regarding AtSWEET16, it served as a fructose/glucose/
sucrose uniporter located on the tonoplast membrane 
and plays a key role in maintaining sugar homeostasis 
(Guo et al. 2014). Our results showed the down-regu-
lation of the bidirectional sugar transporter SWEET16 
under waterlogging stress, which is consistent with previ-
ously reported observations. For instance, the expression 
of SWEET16 was down-regulated under various stress 
conditions such as cold, osmotic stress, or low nitrogen, 
as well as in response to the application of glucose, fruc-
tose, or sucrose. Under cold stress conditions, the over-
expression of AtSWEET16 led to a reduction in fructose 
concentration in leaves (Guo et al. 2014). Given its criti-
cal role in sugar homeostasis, the activity of AtSWEET16 
must be tightly regulated to allow optimal development 
of Arabidopsis under stress conditions. AtSWEET16 over-
expressing plants also displayed enhanced freezing toler-
ance (Klemens et al. 2013).

In summary, the identified genes may regulate vari-
ous physiological processes such as stress tolerance, root 
development, nutrient uptake, and sugar metabolism, as 
well as molecular processes such as gene expression, pro-
tein degradation, and calcium signaling. These processes 
collectively help cucumber to cope with the challenges 
of waterlogging stress and enable the plant to adapt to 
stress conditions. However, more investigation is required 
to elucidate the specific roles of these genes in cucum-
ber’s response to waterlogging stress and their intercon-
nected pathways.
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Finally, 13 genes with significant paired correlations 
between the control group and waterlogged stress con-
ditions were rigorously validated using the RF classifica-
tion model. The accuracy and area under the curve (AUC) 
of the RF model were both exceptionally high, at 100% 
and 1.0, respectively, as shown in the ROC curve (Fig. 5a). 
To visually illustrate the impact of the selected genes on 
the model, we employed SHAP values to discriminate 
between normal and waterlogged stress conditions 
in cucumber. Notably, genes such as LOC101209599, 
LOC101217277, and LOC101216320 showed a signifi-
cant influence on the model’s predictive power, emerg-
ing as pivotal players, particularly concerning cucumber 
response to waterlogging stress. Conversely, genes such 
as LOC101203449 had a negligible effect. These findings 
illuminate the molecular intricacies underlying cucumber 
plant responses to waterlogging stress, shedding light on 
potential targets for further research and crop improve-
ment approaches.

Overall, our study contributes to the growing body of 
knowledge on the response of cucumber to waterlog-
ging stress. The application of machine learning to tran-
scriptomic data allowed us to comprehensively explore 
the molecular landscape of the stress response in cucum-
ber. The candidate genes discovered in this research 
provide promising avenues for future investigation and 
strategies to improve crop management. Understand-
ing the underlying processes that govern the tolerance 
of cucumber plants will contribute to the development 
of stress-resistant cucumber varieties, thereby improv-
ing food security and agricultural sustainability in the 
face of changing environmental conditions. However, it is 
imperative to acknowledge the limitations of our study. 
The datasets used in this analysis may not capture the 
entire complexity of the cucumber response to waterlog-
ging stress, and additional experiments and validation 
are required to confirm the roles of the identified genes 
definitively. Moreover, gene function may be context-
dependent, and further research is required to determine 
the precise processes through which these genes are 
involved in stress adaptation.

In this study, we used three transcriptomic datasets to 
investigate the effects of waterlogging stress on cucum-
ber plants. Using machine learning and LASSO logistic 
regression analyses, we aimed to elucidate the molecular 
mechanisms behind the plant’s response to waterlog-
ging and identify genes that help it adapt to stress. Using 
various machine learning techniques, we were able to 
pinpoint cucumber genes associated with waterlogging 
stress. The Uncertainty, Relief, SVM, and Correlation algo-
rithms revealed four, four, ten, and twenty-one genes, 
respectively, with weights greater than 0.90. Addition-
ally, the LASSO algorithm identified thirteen genes asso-
ciated with waterlogging stress adaptation in cucumber 

plants. To gain deeper insights into the functional signifi-
cance of the identified genes, we conducted a differential 
gene correlation study. This analysis revealed significant 
changes in the correlation between 13 genes under con-
trol and waterlogging stress conditions. These altered 
correlations indicate the dynamic nature of gene interac-
tions in response to stress, emphasizing the importance 
of studying gene networks in the context of stress adap-
tation. Furthermore, the efficacy of these 13 genes was 
demonstrated using the RF model and the SHAP value. 
The RF model performed perfectly, considering an accu-
racy of 100% and area under the curve (AUC) of 1. The 
model’s utilization of the 13 genes highlighted the sig-
nificant impact of LOC101209599, LOC101217277, and 
LOC101216320. In addition, we use the Boruta algorithm 
as a wrapper-based feature selection method to further 
validate our gene selection strategy. The Boruta algo-
rithm confirmed 106 genes as important in the water-
logging stress response. Examining the overlap between 
these 106 genes and the 36 genes identified by the four 
feature weighting algorithms and LASSO, we found that 
21 genes were common. Examining the overlap between 
these 106 genes and the 13 genes identified by the four 
feature weighting algorithms, LASSO and DGCA, we 
found that eight genes were common. These results indi-
cate that the filter-based (Uncertainty, Relief, Correlation, 
SVM) and embedded (LASSO) methods also performed 
well in identifying genes related to waterlogging stress 
response in cucumber, similar to the wrapper-based 
Boruta approach.

Our results not only demonstrate the complexity of 
cucumber’s response to waterlogging but also provide 
insight into potential key players that contribute to stress 
tolerance. In conclusion, our study offers crucial infor-
mation about the molecular basis of the cucumber’s 
response to waterlogging stress. It highlights the use-
fulness of integrating transcriptomic data and machine 
learning techniques to unravel complex stress responses 
in plants. The identified candidate genes hold promis-
ing potential for cucumber improvement, and future 
research should focus on validating their functions and 
exploring their potential applications in breeding stress-
tolerant cucumber varieties.

Conclusions
Overall, the innovative integration of multiple feature 
selection methods, the meta-analysis approach, and 
the depth of biological insights (DGCA) obtained con-
stitute the key novelty of this work. Our study pres-
ents an innovative integration of multiple feature 
selection methods from different categories to analyze 
the response cucumber to waterlogging stress com-
prehensively. By combining these different methods, 
we leverage their respective strengths to achieve a 
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more robust and comprehensive gene selection pro-
cess, thereby reducing bias. Furthermore, we performed 
a meta-analysis of three independent transcriptome 
datasets (PRJNA799460, PRJNA844418, PRJNA678740), 
which improves the generalizability and robustness of 
our results by accounting for variability under different 
experimental conditions. Applying DGCA to the genes 
selected using this multi-method approach revealed new 
insights into the regulatory networks and interactions 
critical for the adaptation of cucumbers to waterlogging 
stress, enabling a deeper understanding beyond merely 
listing differentially expressed genes. The significance of 
the 13 identified genes was validated using the RF model, 
achieving an accuracy of 100% and an AUC score of 1.0. 
SHAP values were used to interpret the model, highlight-
ing the functional importance of specific genes such 
as LOC101209599, LOC101217277, and LOC101216320 
in waterlogging response. Moreover, the Boruta algo-
rithm applied as a wrapper-based feature selection 
method underscores the robustness and reliability of 
our gene selection strategy. Interestingly the genes 
LOC101209599, LOC101217277, and LOC101216320 were 
among genes identified by multiple feature selection 
methods from different categories (filtering, wrapper, and 
embedded). These genes represent valuable targets for 
future breeding programs to improve stress tolerance in 
cucumbers.
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