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Abstract

obtained at 25 mg/L ALA treatment.
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Background: Soil salinity, one of the major abiotic stresses affecting germination, crop growth, and productivity, is
a common adverse environmental factor. The possibility of enhancing the salinity stress tolerance of Cassia
obtusifolia L. seeds and seedlings by the exogenous application of 5-aminolevulinic acid (ALA) was investigated.

Result: To improve the salinity tolerance of seeds, ALA was applied in various concentrations (5, 10, 15, and 20 mg/L).
To improve the salinity tolerance of seedlings, ALA was applied in various concentrations (10, 25, 50, and 100 mg/L).
After 10 mg/L ALA treatment, physiological indices of seed germination (i.e., germination vigor, germination rate,
germination index, and vigor index) significantly improved. At 25 mg/L ALA, there was a significant protection against
salinity stress compared with non-ALA-treated seedlings. Chlorophyll content, total soluble sugars, free proline, and
soluble protein contents were significantly enhanced. Increased thiobarbituric acid reactive species and membrane
permeability levels were also inhibited with the ALA treatment. With the treatments of ALA, the levels of chlorophyll
fluorescence parameters, ie, the photochemical efficiency of photosystem Il (F/F..,), photochemical efficiency (F,/F."),
PSIl actual photochemical efficiency (OPSII), and photochemical quench coefficient (gP), all significantly increased.
In contrast, the non-photochemical quenching coefficient (NPQ) decreased. ALA treatment also enhanced the
activities of superoxide dismutase, peroxidase, and catalase in seedling leaves. The highest salinity tolerance was

Conclusion: The plant growth regulator ALA could be effectively used to protect C. obtusifolia seeds and
seedlings from the damaging effects of salinity stress without adversely affecting plant growth.
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Background

Soil salinity has become a global problem. A large num-
ber of lands are being eroded by salt, and numerous
plants are being subjected to increasing salinity stress.
Soil salinity, one of the major abiotic stresses affecting
germination, crop growth, and productivity, is a com-
mon adverse environmental factor. Soil salinity affects
plant growth, the global geographic distribution of vege-
tation, and the restriction of medicinal plant yields
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(Zhang et al. 2011). Under salinity stress, plants are very
adversely affected by the generation of harmful oxygen
species, leading to oxidative stress (Ahmad et al. 2005;
Wahid et al. 2007).

Several protective mechanisms change to different ex-
tents with increased amounts of oxygen free radicals. Such
mechanisms include those involving free radical and perox-
ide scavenging enzymes, e.g., superoxide dismutase (SOD),
peroxidase (POD), and catalase (CAT) (McDonald 1999;
Li et al. 2008). SOD is key to the regulation of the a-
mounts of superoxide radicals and peroxides. Hydrogen
peroxide (H,O,) can form hydroxyl radicals via the
Haber-Weiss reaction, subsequently causing lipid peroxi-
dation. CAT and POD are implicated in the removal of
H,0, (Zhang et al. 2010). H,O, removal via a series of
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reactions is known as the ascorbate glutathione cycle. In
this cycle, ascorbate and glutathione participate in a
cyclic transfer of reducing equivalents resulting in the
reduction of H,O, to H,O using electrons derived form
nicotinamide adenine dinucleotide phosphate (Goel and
Sheoran 2003). The germination vigor and rate of seed
are also reduced under salt stress. Some other symptoms
of salinity stress include malondialdehyde increase, pro-
tein degradation.

Chl fluorescence is widely used in analyzing photosyn-
thetic apparatuses. Chl fluorescence is also employed to
understand the mechanism of photosynthesis and the
mechanism by which a range of environmental factors
alter photosynthetic activity under both biotic and abi-
otic stresses (Sayed 2003). Fluorescence parameters have
also been applied in the rapid identification of injury to
leaves in the absence of visible symptoms, and in the de-
tailed analysis of change in photosynthetic capacity
(Maxwell and Johnson 2000). Therefore, Chl fluores-
cence may be used as a potential indicator of environ-
mental stress and a screening method of stress-resistant
plants.

5-Aminolevulinic acid (ALA) is a key precursor in the
biosynthesis of all porphyrins compounds, such as Chl,
heme, and phytochrome (Eiji et al. 2003). The exogenous
applications of ALA regulate plant growth and develop-
ment, as well as enhance Chl biosynthesis and photosyn-
thesis, resulting in increased crop yield (Hotta et al.
1997a). In plants, ALA concentration is strictly controlled
to less than 50 nmol-g™* FW (Stobart and Ameen-Bukhari
1984). ALA undergoes enolization and further metal-
catalyzed aerobic oxidation at physiological pH to yield
superoxide radical (O3-), hydrogen peroxide (H,O,), and
hydroxyl radical (HO-). Accumulated Chl intermediates
are assumed to act as photosensitizers for the formation
of singlet oxygen (*O,), triggering photodynamic damage
in ALA-treated plants (Chakrabory and Tripathy 1992).
Therefore, ALA accumulation enhances the levels of re-
active oxygen species (ROS), leading to oxidative stress
and herbicidal activity. Herbicidal activity has been
reported to increase the accumulation of several Chl in-
termediates, such as protochlorophyllide, protoporphy-
rin IX, and Mg-protoporphyrin IX, when plants are
treated with exogenous ALA at relatively high concen-
trations (5 mmol-L™* to 40 mmol-L™?"). However, low
ALA concentrations (0.06 mmol-L™" to 0.60 mmol-L™)
appear to promote rather than damage plant growth by
increasing nitrate reductase activity, increasing fixation
of CO, in light, and suppressing the release of CO, in
darkness (Hotta et al. 1997b). ALA treatments of rice,
barley, potato, and garlic plants at their early growth stages
promote plant growth and photosynthetic rates, resulting
in significant yield enhancements. Low-concentration
ALA applications are also known to enhance plant
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tolerance to cold (Wang et al. 2003) and salinity stresses
(Nishihara et al. 2003; Zhang et al. 2006). At concentra-
tions over 5 mmol-L™, herbicidal effects are exhibited
(Kumar et al. 1999), suggesting the great potential of ALA
as a new non-toxic endogenous substance for agricultural
applications (Wang et al. 2003).

Cassia obtusifolia L. is a well known traditional Chinese
medicinal plant belonging to the medically and economic-
ally important family Leguminosae (Syn. Fabaceae), sub-
family Caesalpinioideae (Joshi and Kapoor 2003). The
seed of the plant, called Juemingzi in China, is widely used
for treating headache, dizziness, as well as red and teared
eyes. In previous investigations of this plant, a number of
constituents have been isolated, including anthraquinones,
anthrones, flavonoids, triterpenoids, and so on. The
anthraquinone derivatives, anthronic, dianthronic, and
anthraquinone glycosides of Cassia are responsible for
its purgative action (Anu and Rao 2001 ).

The mechanisms of ALA in promoting stress tolerance
in plants need to be elucidated. The present paper pro-
vides the first evidence of the capability of ALA to pro-
tect C. obtusifolia seeds and seedlings against salinity
stress, significantly contributing to the understanding of
the ALA role in promoting salinity stress tolerance. The
specific objective is to determine the optimum ALA
concentration that provides the best protection against
this stress.

Methods

Chemicals

ALA was obtained from the Korea Advanced Institute of
Science and Technology (KAIST, Korea). All other
chemicals were of analytical grade and obtained from
Sigma Chemical (St. Louis, Missouri, U.S.A).

Plant material

C. obtusifolia seeds were obtained from Institute of Me-
dicinal Plant Development, Chinese Academy of Medical
Sciences (Beijing, P.R. China). The seeds were surface
sterilized with 2% (v/v) sodium hypochlorite solution for
10 min, and thoroughly washed with distilled water
(Korkmaz 2005). The seeds were then germinated in
covered 9 cm Petri dishes. Based on a preliminary ex-
periment, 100 mmol-L"' NaCl was used in the salinity
stress experiment.

Seed germination treatments

The seed germination experiment included seven treat-
ments: (1) distilled deionized water (CK1), (2) 100 mmol-L™
NaCl (CK2), (3) 10 mgL™ ALA (CK3), (4) 100 mmol-L™
NaCl +5 mg- L™ ALA (T1), (5) 100 mmol-L™* NaCl +10
mgL' ALA (T2), (6) 100 mmol-L™" NaCl +15 mgL™
ALA (T3), and (7) 100 mmol-L™" NaCl +20 mg-L"* ALA
(T4). Water was supplemented to the dishes every day
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and three replicates with fifty seeds per dish were used
for each treatment in a light incubator under a 12/12 h
photoperiod (light/dark; 450 pmol-m?2s™; 25 + 1°C).
The experiment was repeated three times under the
same conditions (n=9). Radicle emergence was the cri-
terion used to assess germination, and was recorded
daily for 6 d until the numbers stabilized. Germinated
seeds were removed from the Petri dishes. The physio-
logical indices of seed germination were determined as
follow: germination vigor (GV) = A/C, germination rate
(GR) = B/C, germination index (GI) = X(Gt/Dt), and
vigor index (VI) = GI x S. A is the total number of seeds
germinated in 4 d, B is the total number of seeds germi-
nated in 6 d, and C is the total seeds in the experiment.
Gt is the germination percentage after ¢ days, and Dt is
the days of germination. S is the radicle mean and
length upon the termination of germination (6 d later).
The fresh weight as well as length of radicle and plum-
ule with different treatments were measured after the
germination stopped.

Seedlings treatments

Seeds without any treatment were sown in pots filled
with growth medium consisting of 4:1 peat and perlite.
The pots were watered and placed in a greenhouse
under a 12/12 h photoperiod, 25/20°C (light/dark) tem-
perature regime and 65% relative humidity. At the two-
real-leaf stage, seedlings were irrigated with half-strength
of Hoagland nutrient solution every day. After 25 d of
pre-culture, the seedlings were at the stage of 4 to 5 real
leaves and the treatment was started. The seedling experi-
ment included seven treatments: (1) Hoagland nutrient solu-
tion (CK1), (2) Hoagland nutrient solution + 100 mmol-L*
NaCl (CK2), (3) Hoagland nutrient solution + 25 mg~L'1
ALA (CK3), (4) Hoagland nutrient solution + 100 mmol-L*
NaCl + 10 mg~L'1 ALA (T1), (5) Hoagland nutrient solution
+ 100 mmol-L ™! NaCl + 25 mgL™ ALA (T2), (6) Hoagland
nutrient solution + 100 mmolL™" NaCl + 50 mgL™" ALA
(T3), and (7) Hoagland nutrient solution + 100 mmol-L*
NaCl + 100 mg-L™" ALA (T4). The nutrient solution was
supplemented to the pots every other day, whereas the
ALA was supplemented every day. The experimental de-
sign was a randomized complete block with six treatments
arranged in individual pots with nine plants per treatment
and three replicates each. The experiment was repeated
three times under the same conditions (n=9).The experi-
ment with all treatment were executed at dusk because
ALA easily decomposes in light. The seedling samples
were collected for assays at the 4th, 8th, and 12th days,
respectively.

Chlorophyll content determination
The contents of total Chl, Chl & and Chl b were deter-
mined by collecting fresh leaf samples (0.5 g) from
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randomly selected 9 plants per replicate. The samples
were homogenized with 5 ml of acetone (80%, v/v) using
a mortar and pestle before being filtered through a
Whatman No.2 filter paper. The absorbance was mea-
sured using a UV-visible spectrophotometer (UV-2550,
Shimadzu, Japan) at 663 and 645nm (Lichtenthaler
1987).

Chlorophyll fluorescence

The Chl fluorescence of leaves was measured at room
temperature (25°C) using a pulse-modulated fluorometer
(PAM-2500, Walz, Germany) after the leaves were dark
adapted for 30 min. The detailed experimental protocol
was as followed (Genty et al. 1989). The minimal fluor-
escence (F,) with all PSII reaction centers open was
measured with modulated light that was sufficiently low
(<0.05 umol-m™s™ as not to induce significant variable
fluorescence. The maximal fluorescence (F,) with all
PSII reaction centers closed was determined by a 0.8 s
saturating pulse at 8000 pmolm™2s™ in dark-adapted
leaves. Then, leaves were continuously illuminated with
336 umol-m™s' white actinic light. The steady-state
value of fluorescence (F;) was thereafter recorded and a
second saturating pulse at 8000 pmol-m>s™* was im-
posed to determine the maximal fluorescence in the
light-adapted state (F,,). F,' was the basal fluorescence
after far-red illumination. The photosynthetic parameters
were calculated using the PAMWIN Data Acquisition Sys-
tem (Walz, Germany) as follow: the photochemical effi-
ciency of PSII (F,/F,) = (Fn-F,)/Fn the excitation
capture efficiency of open PSII reaction centers (F,'/Fy,") =
(F—F,)/Fy, and the coefficients of photochemical
quenching (gP) = (Fn'-Fo)/(Fn'-F,), coefficient of non-
photochemical quenching (NPQ) = (F,,—F,)/Fy, and ac-
tual photochemical efficiency of PSII (OPSIL) = (F,,'-Fy)/
F.,' (Demmig-Adams et al. 1996). Fluorescence measure-
ments were performed in four-flag-leaf stage per treat-
ment combination and all measurements were made
between 8:00 to 11:00 a.m. and replicated at least six
times.

Membrane permeability determination

The level of membrane permeability was represented by
the relative conductivity. The electrical conductivity of
leaf leachates in double distilled water was recorded at
40 and 100°C (Sairam 1994). Leaf samples (0.1 g) were
cut into uniformly sized discs and placed in test tubes
containing 10 mL of double distilled water in two sets.
One set was kept at 40°C for 60 min, and the other was
at 100°C in boiling water bath for 30 min. Their respect-
ive electric conductivities C; and C, were measured by a
conductivity meter. The relative conductivity index was
(C1/Cy) x 100%.
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Determination of thiobarbituric acid (TBA)-reactive
substances

The level of lipid peroxidation was measured in terms of
the content of TBA-reactive substances (TBARS) (Heath
and Packer 1968). Fresh leaf samples (0.5 g) were homoge-
nized in 10 mL of 0.1% trichloro-acetic acid (TCA). The
homogenate was centrifuged at 15 000xg for 5 min. About
2 mL of aliquot of the supernatant was mixed with 4 mL
of 0.5% TBA in 20% TCA. The mixture was heated at 95°C
for 30 min, and then quickly cooled in an ice bath. After
centrifugation at 10 000xg for 10 min to remove suspended
turbidity, the absorbance of the supernatant was recorded
at 532 nm. The value for nonspecific absorption at 600 nm
was subtracted. The TBARS content was calculated using
its absorption coefficient of 155-mmol™-cm™.

Osmotic substances

The osmotic substances measured in the experiment in-
cluded total soluble sugars, free proline, and soluble pro-
tein. Total soluble sugars were estimated using anthrone
reagent (Yemm and Willis 1954). Samples were ex-
tracted with 4 ml of 80% methanol at 80°C for 40 min
and were then centrifuged at 2000xg for 15 min. The
methanol supernatants of three successive centrifuga-
tions were used for the sugar analyses. About 4 mL of
anthrone reagent was then added. The mixture was
heated in a boiling water bath for 8 min, and then
cooled. Optical density of green to dark green color was
read at 630 nm.

Free proline accumulation is widely used as a param-
eter of salt stress tolerance (Storey and Wyn-Jones
1975). In the present study, free proline content in leaves
was determined by the following method. Fresh leaf
samples (0.5 g) were homogenized in 5 mL of sulfosalicylic
acid (3%) using a mortar and pestle. About 2 mL of the
extract was placed in a test tube. About 2 mL each of gla-
cial acetic acid and ninhydrin were added. The reaction
mixture was boiled in a water bath at 100°C for 30 min.
The reaction mixture was cooled, mixed with 6 mL of
toluene, and then transferred into a separating funnel.
After thorough mixing, the chromophore containing tolu-
ene was separated, and absorbance was read at 520 nm
against a toluene blank. The concentration of free proline
was estimated by referring to a standard curve (Bates et al.
1973).

Soluble protein was extracted from 0.5 g of fresh leaf
using 2 mL of 50 mmol-L™ sodium phosphate buffer
(pH 7.4). Soluble protein content was determined by the
method of using bovine serum albumin (BSA) as a stand-
ard (Lowry et al. 1951).

Enzyme extraction and enzymatic activity determination
Fresh leaf samples (1.0 g) were rapidly extracted in a
pre-chilled mortar on an ice bath using 5 ml of ice-cold
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100 mmol-L" phosphate buffer (pH 7.8) containing 1.0
mmol-L! ethylenediaminetetraacetic acid and 5% (wv'h
polyvinylpyrrolidone. After centrifugation at 12 000xg
for 30 min at 4°C, the supernatant was used for the de-
termination of enzymatic activities.

SOD activity was determined by first mixing 0.1 mL of
the enzyme extract with 2465 mL of 100 mmolL™
phosphate buffer (pH 7.8), 75 pL of 55 mmol-L ™" methio-
nine, 300 pL of 0.75 mmolL™ nitroblue tetrazolium
(NBT), and 60 pL of 0.1 mmol-L™ riboflavin in a test tube.
The test tubes containing the reaction solution were irra-
diated under 2 fluorescent light tubes (40 pmol-m™s™) for
10 min. The absorbance was measured at 560 nm. Blanks
and controls were run in the same manner but without il-
lumination and the enzyme extract, respectively. One unit
of SOD activity was defined as the amount of enzyme that
inhibits 50% of NBT photo reduction (Xu et al. 2008).

POD activity was determined as follow. The reaction
mixture contained 0.1 mL of enzyme extract, 2 mL of
0.1 mol sodium acetate buffer (pH = 4.5), and 0.5 mL of
o-dianisidine solution (0.2% in methanol, freshly pre-
pared). The reaction was initiated with the addition of
0.1 mL of 0.2 mol H,O,. The change in absorbance was
recorded at 470 nm at an interval of 15 s for 2 min. One
unit of POD was defined as 0.1 AA4;0/min (Kalpana and
Madhava Rao 1995).

CAT activity was estimated as follow. The reaction
mixture contained 0.6 mL enzyme extract, 0.1 mL of 10
mmol H,0,, and 2 mL of 30 mmol phosphate buffer
(pH = 7.0). The absorbance was recorded at 240 nm im-
mediately after enzyme extract addition at an interval of
15 s for 2 min. The blank did not contain enzyme ex-
tract. One unit of CAT was defined as 0.1 AA,so/min
(Goel and Sheoran 2003).

Statistics

Values were presented as the mean + standard deviation
of there replicates. Statistical analyses were carried out
by ANOVA. Tukey's test was used to compare the means
multiple treatments. To fit the normality, percentage
values were arcsine transformed prior to statistical ana-
lysis. The significance level was set at P = 0.05.

Results

Seeds germination

ALA with different concentrations significantly affected
the seed germination indices GV, GR, GI, and VI of C.
obtusifolia seeds under salinity stress (Table 1). The indi-
ces of seeds treated with only NaCl (CK2) significantly
differed from the control (CK1).The indices improved
after the treatment of ALA (CK3, 10 mgL ')only. On
the other hand, the indices varied with increased ALA
concentrations. The indices improved with different
ALA concentrations (T1-T4), and treatment T2 raised
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Table 1 Germination vigor (GV), germination rate (GR), germination index (Gl), and vigor index (VI) of C. obtusifolia

seeds treated with different ALA under salinity stress®

Treatment GV GR Gl \'/l
CK1 7631 £ 401a 9824 +7.01a 89.94 + 301a 1137+ 1.12a
CK2 52.78 £ 7.23c 7129 + 7.34d 4866 + 5.32d 6.38 + 0.83d
CK3 7996 + 549 a 99.12 £ 669 a 90.15£498 a 1152+ 098a
T 6044 + 6.13b 8133 +623b 7536 + 4.13b 803+ 1.24b
T2 7828 £ 6.15a 98.16 + 8.19a 89.07 + 6.15a 1086 + 1.3%9
T3 6532 £ 6.29ab 8327 £ 546ab 8042 + 408ab 882+ 127ab
T4 59.68 + 6.23b 7831 + 844c 69.89 + 5.53¢ 8.02 £ 1.44c

“Data are the means of three independent replicates. Means + standard errors (n = 9) within each column followed by different letters are significantly different at

the P = 0.05 level.

the indices to a level that did not differ significantly from
the unstressed control (CK1). The optimum ALA con-
centration for alleviating C. obtusifolia seed damage was
10 mgL".

Seedlings growth

The radicle length, plumule length, radicle/plumule ra-
tio, and fresh weight of C. obtusifolia seedlings under
salinity stress treated with different ALA concentrations
were measured after germination was stopped. The ten-
dencies of the radicle length, plumule length, and fresh
weight with different treatments were similar (Table 2).
Treatment with only NaCl stress (CK2) resulted in a sig-
nificant decrease compared with no NaCl stress treat-
ment (CK1) and reached the minimum value. However,
different ALA concentrations improved the growth indi-
ces. The radicle/plumule ratio increased with all ALL
treatments and treatments T2-T4 restored the parameter
to values that did not differ significantly from the un-
stressed CK1. Under salinity stress, plumule growth was
inhibited to a greater extent than radicle growth. The
radicle/plumule ratio increased, possibly indicating that
the different vegetative organs of seedlings adjust this ra-
tio to ensure maximum survival and seedling growth.

Chl content

The seedling leaves of C. obtusifolia treated under NaCl
stress (100 mmol/L) had lower Chl content than the
control CK1 (Figure 1). Chl a4, Chl b, and total Chl content
(CK1, CK3) decreased with the treatment days compared
with CK2. ALA applied in increasing concentrations to
salinity stress expectedly enhanced the Chl content of the
seedlings because ALA is a precursor in Chl biosynthesis.
On the other hand, seedlings treated with increased ALA
concentrations caused different enhancements in Chl con-
tent. ALA concentration increased with 25 mgL'ALA
(T2) resulted in improved Chl content compared with the
CK2. However, 10 mg/LALA has no significant difference
compared with the CK2 at 4 and 8 days, further increased
ALA concentration to 50 mg-L™ (T3) caused a slight de-
crease of total Chl compared with 25 mg-L™! (T2), and the
minimum value was reached with 100 mg~L'1 ALA (T4).

Chl fluorescence

The photochemical efficiency of PSII (F,/F,,), the excita-
tion capture efficiency of open PSII reaction centers (F,'/
F.'), actual photochemical efficiency of PSII (®PSII),
and coefficients of photochemical quenching (¢P) under
100 mmol-L™ NaCl stress (CK2) all significantly decreased

Table 2 Radicle length, plumule length, radicle/plumule ratio, and fresh weight of C. obtusifolia seedlings treated with
different ALA concentrations under salinity stress after germination is terminated®

Treatment Radicle length (cm) Plumule length (cm) Radicle/plumule ratio Fresh weight (mg)
CK1 2.79 = 0.36a 4.12 + 0.65a 0.67 = 0.13c 162.7 £ 57a
K2 233 £0.25¢ 251 +0.68d 0.93 £ 0.16a 1136 + 64d
CK3 281+ 043a 4.14 + 0.66a 0.68 + 0.16¢ 165.58 + 5.2a
T 252 +£034b 356 + 0.75b 0.71 £ 0.09bc 1403 £ 3.5b
T2 278 £ 031a 413 £ 049a 067 £0.21c 161.5 + 4.8a
T3 265 + 0.18ab 3.74 + 0.66ab 0.71 £ 0.6bc 1488 + 3.1ab
T4 260 + 0.76ab 3.27 £ 053¢ 0.79 £ 0.08b 130.6 + 44c

Data are the means of three independent replicates. Means + standard errors (n = 9) within each column followed by different letters are significantly different at

the P = 0.05 level.



Zhang et al. Botanical Studies 2013, 54:18
http://www.as-botanicalstudies.com/content/54/1/18

Page 6 of 13

10.0

>
o
1

o
(=1
Il

Chlorophyll a content (mg/g FW)
£

B CK1

Chlorophyll b content (mg/g FW)
5

=4
=)
|

O CK1L

Total Chlorophyll content (mg/g Fw)

P =0.05 level.

_

OCKl mCK2 §CK3 mTL

ECK2 SCK3 mTl T2 813 g™

ECK2 SCK3 mTl g2 @13 OT4

§
-
%
i

Days after treatment
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compared with CK1 and CK3 (25 mg:L"' ALA only), and
the level increased with treatment days (Figure 2A-2D).
However, after treatment with different ALA concentra-
tions, these fluorescence parameters improved to various
extents, and the differences were significant compared
with CK2. The ALA concentration of 25 mg-L " at 4 d had
the most significant effect and yielded the maximum
values of 0.843 (F,/Fy,), 0.692 (F,/F), 0.872 (¢gP) and
0.586 (®PSII). The change in the non-photochemical
quenching (NPQ) was contrary; it increased with the 100

mmol-L ' NaCl (CK2) treatment and decreased with dif-
ferent ALA concentrations (Figure 2E). The ALA concen-
tration of 100 mgL " had the opposite effect to the other
parameters. Hence, the optimum ALA concentration was
the relatively low 25 mg/L.

Membrane permeability

The level of membrane permeability was represented by
the relative conductivity. Figure 3A shows that the rela-
tive conductivity of the seedlings treated with only NaCl
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stress (CK2) significantly increased compared with that
of the seedlings not treated with NaCl (CK1 and CK3).
The maximum value of 18.17%, which was 5.31 times
that of CK1 (3.42%), was reached 12 d later. However,
the relative conductivity decreased with different ALA
concentrations, and reached the minimum of 5.13% in
the 25 mgL™" ALA treatment (T2) at 4 d. Treatment
with ALA did not significantly differ from the control
CK1. These results indicated that salinity stress resulted
in the significantly increased membrane permeability of
leaves. ALA treatment inhibited the increase in mem-
brane permeability, and effectively decreased the salt
stress on the cell plasma membrane damage.

MDA

The results for lipid peroxidation, estimated as MDA
content, are presented in Figure 3B. MDA content in-
creased with treatment days under NaCl stress, and

reached the maximum value on the 12th day with only
100 mmol-L™* NaCl (CK2). The content significantly de-
creased with different ALA concentrations (T1-T4), and
yielded the minimum value on the fourth day after treat-
ment with 25 mg»L’1 ALA. All ALA treatments (T1-T4)
had significant differences compared with the no ALA
treatment (CK2).

Total soluble sugars, free proline and soluble protein

The contents of total soluble sugars, soluble protein, and
free proline under NaCl stress (CK2) all significantly in-
creased compared with CK1 and CK3 (Figure 4). All con-
tents increased in various degree after ALA treatment. All
maximum values were reached at 12 d after 25 mgL™
ALA treatment. The soluble sugars and free proline con-
tent treated with different concentrations of ALA was
similarly and the contents were all increased after the
treatment (Figure 4A and 4B). The soluble protein content
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significantly decreased after the NaCl only treatment
(CK2), and yielded the minimum value (Figure 4C). How-
ever, the soluble protein improved with different ALA
concentrations, and reached the maximum value on the
12th day after treatment with 25 mg-L ™' ALA.

Activities of three antioxidant enzymes

To investigate further the action of ALA on salinity stress
in C. obtusifolia plants, antioxidant enzyme activities were
determined. The activities of SOD, POD, and CAT in re-
sponse to ALA treatment under a 100 mmol-L™ NaCl
condition are shown in Figure 5. The activities of CAT,
SOD, and POD increased after salinity stress (CK2, treated
with only NaCl and no ALA) compared with the control
CK1 (no treatment) and the control CK3 (25 mg'L'1 ALA
and no NaCl). This result showed the obvious response of
seedlings to stress. SOD activities treated with different
ALA concentrations (T1-T4) significantly increased com-
pared with CK1 and CK2 (Figure 5A). Over time, the ac-
tivities of SOD initially increased, and then decreased. The
maximum appeared 8 d after treatment. The activities
under the treatments of 10, 25, 50, and 100 mgL™' ALA

were strongly enhanced by 3.05-, 4.04-, 3.52-, and 2.70-
fold respectively, compared with CK1 on the 8th day
under a 100 mmol-L™ NaCl condition, as well as by 1.29-,
1.71-, 1.49-, and 1.14-fold, respectively, compared with
CK2. These results showed that different ALA concentra-
tions improved the activity of SOD, and that the effect of
25 mgL' ALA was the most significant. POD and CAT
activities were similar with SOD and reached the maximum
with 25 mgL™" ALA 8 d after treatment. The activities of
POD and CAT were 138.11 and 122.04 U-mg "min™, re-
spectively. The various ALA treatments had significant
differences from CK1 and CK2 (Figure 5B and 5C). How-
ever, the activities did not significantly differ at days 4, 8,
and 12 after treatment. This finding indicated that the ef-
fect of ALA could be sustained for a long time under sal-
inity stress.

Discussion

Salinity is one of the most important abiotic stresses that
affect crop productivity. Unlike drought, salinity stress is
an intricate phenomenon that includes osmotic stress,
specific ion effect, nutrient deficiency, etc. Consequently,
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salinity stress affects various physiological and biochem-
ical mechanisms associated with plant growth and devel-
opment. Plants have developed various combating
mechanisms to cope with the deleterious effects of this
stress.

Seed germination is a major stage in the life history of
plant. It directly affects plant growth, development, and
morphogenesis, as well as indirectly affects yield. Therefore,

a seed that is able to germinate quickly is the foundation of
high and stable yield. In the current study, the levels of GV,
GR, GI, and VI of C. obtusifolia seeds were effectively im-
proved by exogenous ALA application. The results showed
that ALA improved the germination and emergence of C.
obtusifolia seeds under salinity stress. ALA may have im-
bibed into the seeds during priming and imparted tolerance
to salinity stress during seed germination and emergence.
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Hence, ALA treatment could increase the germination
ability of C. obtusifolia seeds under NaCl stress.

Previous studies have shown that Chl can be bleached
under oxidative stress (Noriega et al. 2004). These results
can be explained in two ways. On one hand, ALA at low
concentrations acts as a regulator of Chl and heme bio-
synthesis. On the other hand, oxidative stress may occur
as a result of ROS generated by higher ALA concentra-
tions. ALA, is the key precursor in the biosynthesis of all

porphyrin compounds such as Chl and heme. ALA for-
mation in plants is the rate-limiting step in tetrapyrrole
biosynthesis (Von Wettstein et al. 1995). In the current
paper, the Chl content of C. obtusifolia leaves greatly de-
creased after salinity stress, signifying that salinity stress
injured the synthesis photosynthetic pigments. Treatment
with low exogenous ALA concentrations (25 mg/L) en-
hanced Chl content compared with non-ALA-treated
plants under salinity stress. Hence, the exogenous appli-
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cation of low-concentration ALA prior to salinity stress is
a possible method for overcoming an inadequate biosyn-
thesis problem.

Photosynthesis is an important metabolic process in
plant and significantly affects plant growth, yield, as well
as resistance to adverse environmental factors. Plant
photosynthesis is obviously affected by salinity stress.
The direct results are photosynthetic system damage,
photophosphorylation, and photosynthetic electronic
transfer. The indirect results are those involving en-
zymes in dark reactions. Consequently, photosynthesis
can be used as a significant index for evaluating plant
growth and tolerance. Chl fluorescence measurements
have recently been used to estimate rapidly and non-
invasively the operating quantum efficiency of electron
transport via PSII in plant leaves (Baker and Rosenqvist
2004). The photochemical efficiency of PSII (F,/F,,) is
proportional to the potential maximal quantum yield of
PSII (Hormann et al. 1994), F,/F,, is the efficiency of the
primary conversion of the light energy of PSII, which in-
dicates the ability of PSII light energy utilization and is
closely related to the photoinhibition of the photosyn-
thesis degree (Maxwell and Johnson 2000), F,/F, is also
called the optimal photochemical efficiency of PSII in
the dark. F,'/F,," represents the light energy conversion
efficiency of the open PSII center, which is called the ef-
fective photochemical efficiency or antenna pigment
transformation efficiency of PSII in light (Zhang 1999).
F,/F,, is one of the Chl fluorescence indices that are
usually used in stress conditions. F,/F,, is decreased
under stress, thereby indicating PSII damage (Xu and
Zhang 1999). The actual photochemical efficiency of
PSII (DPSII) reflects the actual original light energy-
capturing efficiency of the PSII response center under
some closed circumstances. In the current paper, Chl
fluorescence kinetics indicated that F,/F,,, F,'/F.', and
O@PSII significantly decreased under NaCl stress. This
finding revealed that PSII suffered damage in various de-
grees. Nevertheless, the light energy capture efficiency
significantly improved upon treatment with different
ALA concentrations.

The coefficients of photochemical quenching (gP)
could reflect the redox state of PSII original electronic
receptor QAs and the number of PSII open centers. gP
reflects the PSII centers of openness to some extent, and
the non-photochemical quenching (NPQ) is the pho-
tosynthetic apparatus of self-protective mechanisms
(Havaux et al. 1991). The NPQ process is an adaptive
mechanism that prevents photoinhibition and mem-
brane damage to plants by adjusting the dissipation of
excessive energy. The photosystem, by increasing non-
radiative heat dissipation, could consume the excessive
light energy absorbed by PSIL. Consequently, the PSII re-
sponse center is protected from damage by photooxidation
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and photoinhibition for absorbing excess light energy. In
the present study, the level of gP declined under NaCl
stress, indicating that NaCl stress led to decreased open-
ness of PSII reaction centers. The accumulation of re-
duced electron acceptors may increase the probability of
generating reactive radicals, which may further cause in-
jury to PSII components (Barber and Andersson 1992).
The light energy captured from the antenna pigment used
for photochemical reactions and the photochemical activ-
ity of the PSII reaction center both decreased. Conse-
quently, excess light energy accumulated in the PSII
reaction center under NaCl stress. The photosystem was
effectively protected by the dissipated excess light energy
via the improved level of NPQ. ALA with different concen-
trations (T1-T4) improved the level of gP and decreased
the level of NPQ, showing that the salinity stress-induced
damage to C. obtusifolia had been alleviated by ALA. ALA
with concentration of 100 mg-L™ has the opposite effect
to NPQ, NPQ improved significantly compared with
other concentrations. This result indicated that higher
concentration of ALA has significant inhibitory effect to
C. obtusifolia seedlings.

Increased MDA content is a good reflection of oxida-
tive damage to membrane lipids as well as other such
vital molecules as proteins, DNA, and RNA. In the
present study, the TBARS levels significantly increased
compared with the controls under salinity stress. The
peroxidation of membrane lipids may result in enhanced
membrane fluidity, which may lead to enhanced electro-
lyte leakage and support the hypothesis that salinity
stress can induce membrane lipid peroxidation. Salinity
treatments caused by significantly increased lipid peroxi-
dation during salt stress have been reported. Higher lipid
peroxidation has also been reported in salt stress-
sensitive rice varieties (Dionisio-Sese and Tobita 1998).
Increased lipid peroxidation due to salinity stress results
in a significantly increased membrane permeability. The
extents of lipid peroxidation and membrane permeability
have been used as indices of salt injury and tolerance in
Amaranthus (Battacharjee and Mukherjee 1996). In-
creased membrane permeability has been suggested to
reflect the extent of lipid peroxidation caused by ROS
(Sairam et al. 1998). In the present study, the TBARS
content and membrane permeability increased under
NaCl stress. This result indicated that the membrane
was damaged by ROS, cell membrane peroxidation oc-
curred, and the normal physiological function of the
plasma membrane became disordered. After treatment
with exogenous ALA, TBARS content and membrane
permeability significantly decreased. Therefore, ALA al-
leviated the damage caused by NaCl stress.

The accumulations of soluble sugars, soluble protein,
and free proline under stress protect plant cells by balan-
cing the osmotic strength of cytosol with that of vacuoles
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and the external environment (Gadallah 1999). These sol-
utes are cytosolic osmotic substances, and may also inter-
act with cellular macromolecules such as enzymes to
stabilize the structure and function of such macromole-
cules. A direct consequence of a higher osmolyte concen-
tration is the maintenance of comparatively antioxidant
enzyme activities (Smirnoff and Cumbes 1989). The re-
sults of the present study indicated that the contents of
soluble sugar, soluble protein, and free proline treated
with ALA in C. obtusifolia seedling leaves were signifi-
cantly higher than those treated with NaCl stress (CK2). A
lower osmotic potential within the cell was possibly
maintained to help cells absorb water from the external
environment, resulting in resistance to the damage caused
by NaCl stress.

To endure oxidative damage under conditions of in-
creased oxidative stress such as salinity, plants must pos-
sess efficient antioxidant systems. Plants do possess
antioxidant systems in the form of enzymes such as
SOD, POD, and CAT; they also have an efficient system
for decomposing ROS, using the enzyme SOD in chloro-
plasts (Asada 1999). SOD is located in chloroplasts,
mitochondria, the cytoplasm, and peroxisomes. SOD
serves as the first line of defense against ROS (Liau et al.
2007). A high SOD activity can efficiently remove O,
which leads to the production of H,O, H,O, can be
scavenged by CAT and GR (glutathione reductase) in the
Halliwell-Asada pathway. The accumulation of H,O,
then begins and exacerbates membrane lipid peroxida-
tion, causing membrane damage. POD could remove
SOD disproportionation products and synergizes with
SOD, the essential condition of a salt-resistance mechan-
ism. Protective enzymes increase to a high level to re-
move ROS and keep them at a low level. Consequently,
the function and structure of undamaged membranes
are maintained. In the current paper, three kinds of anti-
oxidant enzymes significantly increased with different
ALA concentrations, although the change trends are
slightly different. Apparently, the three enzymes had dif-
ferent strategies for facing stress. Exogenous ALA treat-
ment improved the abilities of the three enzymes for
resisting peroxide damage to plant cells.

So far, the reason for ALA-induced increase in anti-
oxidant enzyme activity in plants is still unknown. It
may be related to the conversion of ALA into heme, as
suggested by a previous study that exogenous ALA pro-
cessing promotes heme efflux from intact developing
cucumber chloroplasts and translates it into he-
moglobin (Thoms and Weinstein 1990). '*C has also
been found to permeate into the porphyrin auxiliary
molecules of peroxidase and pigment cells upon treat-
ment with *C-ALA (Van Huyestee 1977). Evidently,
heme is an auxiliary component of peroxidase, and ALA
treatment promotes the synthesis of heme (Hunter et al.
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2005). Consequently, peroxidase activity and anti-oxidative
stress are increased.

Conclusion

The present study revealed that ALA with an appropri-
ate concentration could significantly alleviate NaCl
stress-induced damage to C. obtusifolia seeds and seed-
lings. The alleviation is achieved via improved antioxi-
dant enzyme activities, increased Chl content and
photosynthetic efficiency, strengthened capacity of scav-
enging ROS, increased membrane stability, decreased
cell osmotic potential, as well as decreased membrane
lipid peroxidation.
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