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Cytokinin, auxin, and abscisic acid affects sucrose
metabolism conduce to de novo shoot
organogenesis in rice (Oryza sativa L.) callus
Shiang-Ting Lee and Wen-Lii Huang*
Abstract

Background: Shoot regeneration frequency in rice callus is still low and highly diverse among rice cultivars. This
study aimed to investigate the association of plant hormone signaling and sucrose uptake and metabolism in rice
during callus induction and early shoot organogenesis. The immatured seeds of two rice cultivars, Ai-Nan-Tsao 39
(ANT39) and Tainan 11 (TN11) are used in this study.

Results: Callus formation is earlier, callus fresh weight is higher, but water content is significant lower in ANT39 than in
TN11 while their explants are inoculated on callus induction medium (CIM). Besides, the regeneration frequency is
prominently higher in ANT39 (~80%) compared to TN11 callus (0%). Levels of glucose, sucrose, and starch are all
significant higher in ANT39 than in TN11 either at callus induction or early shoot organogenesis stage. Moreover, high
expression levels of Cell wall-bound invertase 1, Sucrose transporter 1 (OsSUT1) and OsSUT2 are detected in ANT39 at the
fourth-day in CIM but it cannot be detected in TN11 until the tenth-day. It suggested that ANT39 has higher callus
growth rate and shoot regeneration ability may cause from higher activity of sucrose uptake and metabolism. As well,
the expression levels of ORYZA SATIVA RESPONSE REGULATOR 1 (ORR1), PIN-formed 1 and Late embryogenesis-abundant 1,
representing endogenous cytokinin, auxin and ABA signals, respectively, were also up-regulated in highly regenerable
callus, ANT39, but only ORR1 was greatly enhanced in TN11 at the tenth-day in CIM.

Conclusion: Thus, phytohormone signals may affect sucrose metabolism to trigger callus initiation and further de novo
shoot regeneration in rice culture.
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Background
Totipotency ability in individual plant cells can be
regenerated to a whole plant by modulating culture
conditions (Reinert, 1959). Many factors influence
plantlet regeneration ability; examples are genotypes
(Huang et al., 2002; Glowacha et al., 2010), phytohor-
mones (Barreto et al., 2010; Feng et al., 2010; Sun and
Hong, 2010; Huang et al., 2012), osmotic requirement
(Huang and Liu, 2002; Pan et al., 2010; Park et al.,
2011; Huang et al., 2012) and carbon sources (Huang
and Liu, 2002; Iraqi et al., 2005; Huang et al., 2006;
Feng et al., 2010; Silva, 2010). However, the mecha-
nisms of totipotency are still not clarified.
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The callus differentiation pathway involves somatic
embryogenesis and organogenesis (Jiménez, 2005). Pre-
vious studies indicated that both pathways generate en-
tire plantlets from callus in rice but mainly through
organogenesis (Jiang et al., 2006; Huang et al., 2012).
However, shoot organogenesis from rice calli derived
from immature embryo differ among varieties (Huang
et al., 2002; Khaleda and Al-Forkan 2006; Dabul et al.,
2009). Indica rice varieties generally are less amenable
to shoot organogenesis (Zaidi et al., 2006). However,
some indica rice varieties have been used to establish
high-regeneration-frequency callus culture (Hoque and
Mansfied 2004; Wani et al., 2011). In our previous study,
the indica rice Ai-Nan-Tsao 39 (ANT39) was the only
one screened from 15 cultivars to have high shoot or-
ganogenesis frequency (more than 70%) without the
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need for extra-osmotic stress treatment during callus in-
duction (Huang et al., 2006).
Exogenous carbohydrates are used as the main en-

ergy source for explants because of their hetero-
trophism. Numerous studies have focused on the effect
of the kinds and concentrations of carbohydrate sup-
plemented into media (Iraqi et al., 2005; Feng et al.,
2010; Silva, 2010); however, the metabolic pathway
during callus induction and shoot organogenesis has
rarely been discussed. Sucrose is generally used in
plant tissue culture; explants uptake sucrose from the
medium and hydrolyze it into glucose, fructose for
subsequent metabolism (Amino and Tazawa, 1988;
Schmitz and Lorz, 1990; Huang and Liu, 2002). Cell
wall-bound invertase (CIN) and sucrose transporter
(SUT) are the main routes for sucrose absorption and
transportation in higher plants. In rice, CIN is involved
in many physiological functions such as grain filling,
early seed development and inflorescence differenti-
ation (Hirose et al., 2002; Cho et al., 2005 Ji et al.,
2005; Wang et al., 2008; Wang et al., 2010). Like CIN,
SUT was found related to seed development, stress
response, and plant growth (Scofield et al., 2007; Chen
et al., 2010; Siao et al., 2011; Siahpoosh et al., 2012).
However, the effect of these sucrose metabolism-
related genes on callus formation and shoot regener-
ation in rice are still unknown. Changes in sucrose- or
starch-metabolism–related enzyme activities in callus
culture were found in Gossypium hirsutum (Kavi Kishor
et al., 1992), Daucus caroata (Tang et al., 1999), Medicago
arborea (Cuadrado et al., 2001), and Picea mariana (Iraqi
et al., 2005). In our preliminary studies, cellular starch
content at callus induction and glucose content at the
early regeneration stage were important factors for shoot
regeneration in rice (Huang and Liu, 2002; Huang et al.,
2006). However, the signals to trigger carbohydrate metab-
olism and gene expression of related enzymes in rice
callus are still poorly understood.
Plant growth regulators (PGRs) have an important

role in cell growth and differentiation. Since the clas-
sical finding of auxin and cytokinin (Skoog et al., 1965),
many papers have shown the effect of PGRs in tissue
culture. Both exogenous and endogenous levels of
PGRs are highly related to shoot organogenesis (Yin
et al., 2008; Zhang et al., 2008; Feng et al., 2010; Huang
et al., 2012). Auxin, cytokinin, and ABA are considered
key factors for shoot differentiation in callus culture
(Brown et al., 1989; Pernisová et al., 2009; Su et al.,
2009; Cheng et al., 2010; Vanneste and Friml, 2009;
Zhao et al., 2010). Our previous studies showed high
levels of endogenous auxin, abscisic acid, and zeatin in
highly regenerable rice callus (Liu and Lee, 1996;
Huang et al., 2012). B-type response regulator (B-RR)
proteins are positive signal regulators for cytokinin
signaling (Müller and Sheen, 2007) and the gene ex-
pression could be recognized at the cytokinin level
(Mason et al., 2005). The B-RR ORYZA SATIVA RE-
SPONSE REGULATOR 1 (ORR1) affects cytokinin sig-
naling in rice (Ito and Kurata, 2006). Similarly, the
auxin efflux carrier gene family, PIN-formed (PINs), are
a key factor for auxin polar transport (Petrásek et al.,
2006; Wang et al., 2009). OsPIN1 can be detected in
calli (Xu et al., 2006) and is related to root emergence
and tillering (Huang et al., 2010; Wang et al., 2009).
PIN gene expression may represent auxin accumulation
(Xu et al., 2006; Huang et al., 2010). Besides, OsLEA1 is
regulated by ABA and represented as the signal of en-
dogenous ABA (Shih et al., 2010).
Many studies have shown the cross-talk between phy-

tohormones and sugar sensing in higher plant. Glucose
might be a bridge between carbohydrate and phytohor-
mone signaling (Halford and Paul 2003; León and
Sheen, 2003; Roitsch et al., 2003; Hartig and Beck,
2006). However, no reports have discussed the relation-
ship between PGR signaling, carbohydrate metabolism,
and shoot organogenesis.
In this study, we used two rice cultivars with variable

regenerative ability to compare carbohydrate content
and gene expression of sucrose-metabolism–related
enzymes during callus induction and shoot organogen-
esis. We further identified the gene expression patterns
of OsPIN1, ORR1 and OsLEA1 in at the same cultiva-
tion period to clarify the relationship between plant
hormone signaling and sucrose metabolism in rice
callus. Sucrose metabolism may be an important part
of shoot organogenesis and may be triggered by phyto-
hormones signaling.

Methods
Plant material, callus induction and shoot regeneration
Primary callus was derived from 12- to 14 day-old
immature seeds of two rice cultivars (Oryza sativa L.)
“Tainan 11” (TN11) and “Ai-Nan-Tsao 39” (ANT39) in-
cubated on callus induction medium (CIM) composed
of MS basal medium (Murashige and Skoog, 1962)
containing 3% sucrose and 10 μM 2, 4-D (Huang et al.,
2012). After 2 weeks, calli were transferred to regener-
ation medium (RM) composed of MS basal medium plus
10 μM NAA and 20 μM kinetin. Both CIM and RM
were cultured at approximately 27°C and 200 μmole
photons m-2 s-1 with a 12-h light/dark photoperiod. Calli
were harvested at the 10th and 14th days in CIM and
fresh weight was measured. Shoot regeneration fre-
quency (%) was evaluated at week 4 after transfer to RM
as (calli number with regenerated plantlets / total calli
number) x 100%. The calli with regenerated plantlets
higher than 1 cm were calculated. The results were from
at least 3 independent experiments.
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Measurements of callus growth and water content
Callus was collected on day 10 and day 14 on CIM.
These collected calli were weighted as their fresh weight.
Dry weights were obtained from these fresh calli that
were dried in a ventilating oven at 60°C for 48 hours.
Water content was determined from (Fresh weight - Dry
weight / Fresh weight) × 100%. Each data was averaged
from at least 5 independent calli.

Extraction and concentration determination of
carbohydrates
Samples were harvested after inoculation for 4, 7, 10, 14
days in CIM and 1, 3, 5 and 7 days in RM. The samples
were weighed up to 100 mg and dried in a ventilating oven
at 60°C for 48 h, then extracted twice with 80% ethanol.
The supernatant and pellet were used for soluble sugars
(sucrose and glucose) and starch measurement, respectively
(Huang and Liu, 2002). A glucose assay kit (Sigma) was
used for glucose content determination. The assay solution
was added to the ethanol-extracted supernatant and incu-
bated at 37°C for 15 min, and 2 mL of 12N H2SO4 was
added to stop the reaction. The absorption value of 540 nm
was obtained by use of a spectrophotometer (U-2001,
Hitachi). Each sample was replicated at least 3 times. For
sucrose content, ethanol-extracted solution was hydrolyzed
by use of invertase (Sigma) for 1 h then underwent the
above glucose-content assay (Huang et al., 2006). The ab-
sorption value included both sucrose and glucose, so the
glucose content was subtracted from this determination to
obtain sucrose content.
The pellet was re-suspended with deionic water and

boiled for 20 min for measurement of starch content.
Amyloglucosidase mixture (90 mM sodium-acetate, 0.1%
NaN3, and 25 units amyloglucosidase, pH 4.6) was added
for incubation at 55°C for 2 h (Huang and Liu, 2002). The
supernatant was collected after centrifugation and quanti-
fied as described above for glucose content measurement.

RNA isolation and quantitative real-time polymerase
chain reaction
Total RNA was isolated from the callus (approximately 100
mg) by the TRIzol reagent method (Invitrogen) and treated
Table 1 Primers used for quantitative RT-PCR analysis

Gene Accession number

OsCIN1 AY578158 TACG

OsSUT1 D87819 TCCT

OsSUT2 AB091672 ATTC

OsPIN1 AF056027 AACC

ORR1 AB246780 GCCA

OsLEA1 AK064055 GACG

OsUBI D12629 CGCA
with TURBO DNA-free™ DNase (Ambion) to remove re-
sidual DNA. First-strand cDNA was synthesized from 1 μg
total RNA with use of MMLV Reverse Transcriptase
(Promega). Quantitative RT-PCR involved the IQ2 Fast
qPCR System (Bio-Genesis) on the ECO™ real-time PCR
machine (Illumina). The gene-specific primers designed
from the 3’UTR of rice genes are shown in Table 1. The
quantitative RT-PCR program initially started with 95°C de-
naturation for 5 min, followed 40 cycles by 95°C for 30 sec
and 60°C for 30 sec. To quantify the relative expression of
genes, 2-ΔΔCq values of the target gene were normalized to
that of ubiquitin (OsUBI) gene.

Statistical analysis
Data were analyzed by use of Fisher’s least significant
difference (LSD) test with SPSS v 12.0 for Windows
(SPSS Inc., Chicago, IL). P<0.05 was considered statisti-
cally significant.

Results
Rice cultivars differ in callus growth, morphologic
features and regeneration frequency
To compare the callus induction and shoot organogenic
ability between two rice cultivars, we observed the callus
morphology and fresh weight variation. It showed that the
calli formed from ANT39 immature seed inoculated on
CIM for 3 to 4 days but recognized callus clear from TN11
explant late to days 6 to 7 (Figure 1a). ANT39 calli are
large, compact and whitish, but TN11 calli are small and
yellowish. The fresh weight of callus was greatly increased
and significantly higher in ANT39 than in TN11. The aver-
age fresh weight each callus at the fourteenth-day is ap-
proximately to 40 mg in ANT39, however, only 22 mg in
TN11 at the same day (Figure 1b). On the other hand, the
water content at the fourteenth-day callus in ANT39
is 75% but it is approximately to 88% in TN11 callus
(Figure 1c). The results suggested ANT39 has higher callus
formation ability and growth rate compared to TN11.
After transfer to RM, the green spots observed at day 7 in

ANT39 calli and continuously spread out, especially at the
side contact with the media. The multiple shoots could be
emerged after 3 weeks in RM and whole plantlets are further
Forward (5′-3′) Reverse (5′-3′)

GCAACTTCTACGCATC CTTGTCGTAGGTGACGCTGT

CTGGTTCCACAAACAA ATTTGCACAAGCTTCACAGC

CCGTTCACCGTTACTC AGGATTGAGGCTCTTGCACT

CGAACACCTACTCCAG CATCTCGAAGTTCCACCTGA

TTTGCAGAAGTTCAGA AAGTCCTCCCAGTGAGCCTA

ACAAGATGCTCAAGGA CATGCACATGGATACACCAA

AGTACAACCAGGACAA TGGTTGCTGTGACCACACTT



Figure 1 Morphological features (a), fresh weight (b), and water content (c) of Ai-Nan-Tsao 39 (ANT39) and Tainan 11 (TN11) calli from
immature seeds inoculated on MS basal media containing 3% sucrose and 10 μM 2,4-D. * and ** denote significant difference between
ANT39 and TN11 based on the level of 0.05 and 0.01, respectively. Data are mean ± standard error (n=3). Scale bar = 5 mm.
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growth (Figure 2a). The shoot organogenic frequency of
ANT39 is approximately to 80% (Figure 2b). In contrast,
TN11 calli are continue to growth and have no shoot
regenerated in RM. Several calli of TN11 only emerged
green spots and adventitious roots at late regeneration stage
(Figure 2a). In this study, ANT39 and TN11 belong to the
highly regenerable (HR) and non-regenerable (NR) cultivar,
respectively. ANT39 is the only one cultivar we surveyed in
rice possess high shoot regeneration ability without extra os-
motic stress treatment during callus induction (Huang et al.,
2002). It is suitable used to clarify the possible mechanism
with respect to shoot regeneration in rice.

Relation of carbohydrates content and shoot
organogenesis ability
To clarify the relationship between shoot organogenesis
ability and carbohydrate metabolism, glucose, sucrose
and starch contents were determined at callus induction
and early shoot regeneration stage. The result showed
Figure 2 Shoot organogenesis of 14-day-old callus transferred to reg
callus during shoot organogenesis. (b) Shoot regeneration frequency. Plant
(n=3). ** denotes significant difference between ANT39 and TN11 based on
that glucose, sucrose, and starch contents are all signifi-
cant higher in the HR calli, ANT39, than in NR calli,
TN11, either at callus induction or regeneration period
(Figure 3). The high carbohydrate content in ANT39
was maintained during callus induction (Figure 3a-c),
but the levels of glucose and starch are gradually de-
creased after transferred to RM in 7 days (Figure 3d, f ).
All glucose, sucrose, and starch contents in TN11 calli
are low and have no significant change during the whole
evaluation time. The carbohydrate utilization is higher
in ANT39 than in TN11 calli would supply to the energy
and osmotic requirement of callus formation and starch
accumulation. ANT39 callus possesses high level of starch
mainly caused from higher biosynthetic activity and is also
observed in our previous study by histochemical analysis
(Huang et al., 2006). Besides, high levels of cellular carbo-
hydrates associated with shoot organogenesis in rice callus
are similar to the regeneration system induced by osmotic
stress (Huang and Liu, 2002).
eneration media for 4 weeks. (a) Morphology of ANT39 and TN11
lets higher than 1 cm were recorded. Data are mean ± standard error
the level of 0.01.



Figure 3 Carbohydrate content during callus induction and early shoot organogenesis in rice. Glucose, sucrose and starch content in
ANT39 and TN11 calli inoculated in callus induction media (CIM; a-c) and regeneration media (RM; d-f). Data are mean ± standard error (n=3).
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Expression of sucrose metabolic enzymes in rice calli
According to changes in carbohydrate contents, the effi-
ciency of sucrose uptake and hydrolysis from media is re-
lated to calli growth and cell differentiation. We thus
determined the mRNA expression of OsCIN1 and OsSUTs
during callus induction and early shoot regeneration.
OsCIN1 expression was high in ANT39 from days 4 to
days 10 with CIM inoculation then greatly decreased
(Figure 4a). The higher expression patterns of OsSUT1
and OsSUT2 were similar to OsCIN1 in ANT39 during
callus induction (Figure 4b, 4c). Conversely, these genes
did not detected in TN11 calli until days 10 inoculated on
CIM; their expression remained high continue to days 14
(Figure 4a-c). These results are identical to the determin-
ation of sucrose and glucose contents.
In ANT39 calli, after being transferred to RM, OsCIN1

expression was significantly induced at the first day and
greatly increased at the day 3 (almost 1000-folds). After
that, the expression gradually decreased. Like the expres-
sion of OsCIN1, that of OsSUT1 and OsSUT2 was up-
regulated at the days 1 and days 3 in RM, then decreased
quickly at the days 5 (Figure 4d-f). In contrast, in NR calli,



Figure 4 Real time-PCR analysis of mRNA levels of OsCIN1, OsSUT1 and OsSUT2 in rice immature seeds during callus induction and
early shoot organogenesis. (a-c) OsCIN1, OsSUT1 and OsSUT2 levels at days 4, 10 and 14 in CIM. The levels were normalized to that at day 4 in
ANT39. (d-f) OsCIN1, OsSUT1 and OsSUT2 levels at days 0, 1, 3 and 5 in RM. Levels were normalized to that at day 0 of ANT39 in RM. Ubiquitin
level was used as a reference. Data are mean ± standard error (n=3).
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TN11, the expressions of OsCIN1 and OsSUT2 were
steady in RM, and reduced expression of OsSUT1 at the
days 1. Thus, regardless of callus induction or shoot re-
generation stage, ANT39 showed high efficient sucrose
uptake and utilization, which would explain the faster
callus formation and shoot organogenesis in ANT39 than
in TN11.

Cytokinin, auxin, and ABA signals are related to
sucrose uptake
High levels of endogenous auxin, ABA, and zeatin in high
regenerable calli are observed in our previous study (Liu
and Lee, 1996; Huang et al., 2012). To clarify the relation-
ship between plant hormones and carbohydrate metabol-
ism in rice calli, we determined the expression patterns of
the B-type response regulator of cytokinin signaling ORR1
and auxin efflux carrier OsPIN1 (Xu et al., 2006), and late
embryogenesis-abundant gene OsLEA1. OsPIN1 was highly
expressed in ANT39 both at callus induction and shoot or-
ganogenesis stages but was low in TN11 and did not
change during the whole evaluation period (Figure 5a, 5d).
The high expression level of OsLEA1 is also detected at
CIM in ANT39 (Figure 5c). CIM was not supplemented
with exogenous cytokinin; thus, the expression level of
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ORR1 was the mean endogenous cytokinin level. ORR1
showed high expression at the early stage in ANT39 calli
but higher expression in TN11 at the tenth-day (Figure 5b).
After transferred to RM, the expression of ORR1 was
strongly induced in ANT39 on days 1 and 3 because of ex-
ogenous kinetin included in the RM. However, the expres-
sion of ORR1 in TN11 did not significant difference
during the same regeneration period (Figure 5e). Besides,
the expression of OsLEA1 both in ANT39 and TN11 at
early shoot regeneration stage are very low and have no
different significantly (data not shown).
Figure 5 Real time-PCR quantification of mRNA levels of OsPIN1, ORR
(CIM) and early shoot organogenesis (RM). (a, d) OsPIN1 levels. (b, e) O
TN11 in CIM. Ubiquitin level was used as a reference. Data are mean ± stan
Discussion
Although shoot regeneration and transformation systems
are well developed in rice callus, the regeneration frequency
is commonly low and is cultivars-dependent (Huang et al.,
2002; Khaleda and Al-Forkan 2006; Dabul et al., 2009).
Shoot regeneration ability can be greatly enhanced by high
osmotic stress treatment during callus induction (Huang
and Liu, 2002; Huang et al., 2002; Jiang et al., 2006; Huang
et al., 2012). As well, stress-treated calli have lower water
content, water potential, and fresh weight but higher glu-
cose and starch contents (Huang and Liu, 2002). ANT39 is
1 and OsLEA1 in rice immature seeds during callus induction
RR1 levels. (c) OsLEA1 level. Levels were normalized to that at day 14 of
dard error (n=3).



Lee and Huang Botanical Studies 2013, 54:5 Page 9 of 11
http://www.as-botanicalstudies.com/content/54/1/5
a unique cultivar which has high shoot organogenic ability
without extra-osmotic stress treatment (Huang et al., 2002).
At present study, calli fresh weight was higher but water
content lower in ANT39 calli than in non-regenerable
TN11 calli (Figure 1b, 1c). No matter of ANT39 or
osmotic-induced regeneration system in rice, to initiate the
embryogenic calli or organogenic meristemoids at the
callus induction stage is the most critical point for further
plantlets regeneration (Sugiyama, 1999; Huang and Liu,
2002; Huang et al., 2012).
Carbon sources, phytohormones, and genotypes are well

known to affect shoot regeneration in cultured cells. How-
ever, the cross-talk among these factors is still little under-
stood. Sucrose is the main carbohydrate supplemented
into the culture media and prominently acts as an energy
source and osmotic requirement during organogenesis
(Verma and Dougall, 1977; Thorpe et al., 1986; Iraqi et al.,
2005; Huang et al., 2006; Feng et al., 2010; Silva, 2010).
The correlation between starch metabolism and shoot re-
generation was also reported in tobacco (Thorpe et al.,
1986), sugarcane (Ho and Vasil, 1983), Begonia (Mangat
et al., 1990) and rice (Huang et al., 2006). However, little is
known about the signals to trigger sucrose metabolism in
cultured cells, especially at the gene expression level. Here,
we found that the possible route from plant hormone
auxin, cytokinin and ABA to shoot organogenesis may be
through sucrose metabolism in rice callus. Exogenous
plant hormones or plant growth regulators used to induce
shoot organogenesis interact with endogenous tissue-
specific hormones; thus, the level of endogenous hor-
mones in cultured explants and derived calli may be the
most important factor in shoot organogenesis. In our pre-
vious studies, highly regenerable calli showed high level of
endogenous indole-3-acetic acid (IAA) and ABA during
whole callus induction; however, high levels of zeatin/zea-
tin ribosides only showed at 1 week then gradually de-
creased in CIM. The levels of IAA and ABA quickly
decreased and that of zeatin/zeatin ribosides predomin-
antly increased after being transferred to shoot regener-
ation media (Liu and Lee, 1996; Huang et al., 2012).
ANT39 calli showed high levels of sucrose, glucose and

starch (Figure 3). Moreover, the mRNA expression of both
OsCIN1 and OsSUT2 was significantly induced at the early
callus induction stage in ANT39 but it can be detected only
at the late stage in TN11 (Figure 4). The high level of cellu-
lar sucrose in ANT39 calli may due to direct uptake from
media by the sucrose transporter (Figure 4b, 4c). As well,
the high glucose content was hydrolyzed by cell wall-bound
invertase from sucrose in the culture media (Figure 4a) and
from cellular sucrose hydrolysis by soluble invertase and su-
crose synthase (Huang et al., unpublished data). However,
only a high level of glucose was identified in osmotic stress-
treated rice calli, with no difference in sucrose content
(Huang and Liu, 2002). The high starch content in ANT39
during callus induction resulted from higher starch biosyn-
thetic enzyme activity but may due to lower degradation ac-
tivity in osmotic-treated calli (Huang and Liu, 2002; Huang
et al., 2006). After transfer to RM, non-regenerable TN11
calli always maintained lower sucrose, glucose and starch
contents than that from ANT39 during the evaluated
period (Figure 3). However, the content of these carbohy-
drates were significant higher in ANT39 than in TN11 calli.
The higher glucose and sucrose contents may result from
uptake through the sucrose transporter and further hy-
drolysis in ANT39 (Figure 4) but may be hydrolyzed by
CIN before sucrose uptake in the osmotic-induced regener-
ation system (Huang and Liu, 2002). Thus, the signals and
carbohydrate metabolism pathway affecting shoot organo-
genesis in ANT39 calli may differ with osmotic-stress in-
duced regeneration system in rice.
Both exogenous and endogenous plant hormones trigger

callus formation and further cell differentiation in plant
tissue culture (Barreto et al., 2010; Feng et al., 2010; Pan
et al., 2010; Sun and Hong, 2010; Huang et al., 2012). Ex-
ogenous plant hormones or plant growth regulators used
to induce shoot organogenesis interact with endogenous
tissue-specific hormones; thus, the level of endogenous
hormones in cultured explants and derived calli may be
the most important factor in shoot organogenesis (Huang
et al., 2012). How the endogenous hormones signals, espe-
cially those of cytokinin, ABA, and auxin, affect cell
growth and differentiations are less understood. We deter-
mined the expression patterns of ORR1 as related en-
dogenous cytokinin level (Mason et al., 2005), OsPIN1 as
related endogenous auxin level (Sauer et al., 2006; Tsai
et al., 2012) and OsLEA1 as related endogenous ABA level
(Grelet et al., 2005; Shih et al., 2010), respectively. In
ANT39 calli, all ORR1, OsPIN1 and OsLEA1 were strongly
induced at the early stage in CIM, but ORR1 was greatly
reduced after days 10 in CIM (Figure 5). In contrast, in
TN11 calli, they showed low expressions, except that
ORR1 expression increased after days 10 in CIM. All the
expression of phytohormones responsive genes are con-
sistence with endogenous levels of IAA, ABA, and zeatins
determined from our previous study (Liu and Lee 1996;
Huang et al., 2012). The high levels of endogenous IAA
and cytokinin at early callus induction stage in highly re-
generable cultivar may response to initiate callus formation
and amplification (Skoog et al., 1965). Besides, high level of
ABA at late stage in CIM is related to induce organogenic
callus formation (Brown et al., 1989; Huang et al., 2012). In
addition, the expression patterns of ORR1 and OsPIN1
agree with those of OsCIN1 and OsSUTs. Cytokinins and
auxins affecting CIN and SUTs have been found in whole
plant systems (Ehness and Roitsch, 1997; Hartig and Beck,
2006; Walters and McRoberts, 2006). Our data showed that
both hormones have a similar effect on carbohydrate me-
tabolism during callus induction and shoot organogenesis.
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In ANT39 regenerable callus, endogenous cytokinin trig-
gered OsCIN1 and OsSUTs gene expression and gained su-
crose absorption ability during early callus induction. The
expression of OsCIN1 and OsSUTs are strongly inhibited
when the auxin transport inhibitor, 2,3,5-triiodobenzoic
acid, was supplemented into the CIM (Huang et al., unpub-
lished data ). These expression patterns of sucrose metabol-
ism related genes are positive correlated to the expression
pattern of OsPIN1 gene in CIM but is negative correlated
in RM. The reason is high level of IAA response to initiate
organogenic or embryogenic competence cell in CIM, how-
ever it would be related to root formation at late stage in
RM. Besides, the ratio of auxin/cytokinin is higher in CIM
may affect the expression of OsCIN1 and OsSUTs. The su-
crose absorbed or hydrolyzed in ANT39 callus provided
starch biosynthesis as well as energy requirements for cell
growth. Our previous histochemical analysis revealed abun-
dant starch granules around whole calli in ANT39 but not
non-regenerable rice calli (Huang et al., 2006).

Conclusions
Finally, we found that plant hormones signaling and
carbohydrate metabolism are closely related to shoot
organogenesis in rice callus. The explants of the highly
regenerable cultivar ANT39 may more sensitive to
CIM (MS basal medium containing 3% sucrose and 10
μM 2, 4-D) to quickly increase the levels of endogen-
ous ABA, cytokinin and auxin. The high levels of phy-
tohormones immediately trigger sucrose uptake from
the media by a sucrose transporter or cell wall-bound
invertase. The high amounts of glucose and sucrose
contents provide for callus induction and growth and
increase starch biosynthesis. After transferred to RM
(MS medium with 3% sucrose, 20 μM kinetin and 10
μM NAA), exogenous kinetin and NAA led to sucrose
absorption and hydrolysis to provide the energy to ini-
tiate shoot organogenesis and further development.
We reveal the association among phytohormones, su-
crose metabolism, and shoot organogenesis in rice
calli. However, the signal transduction pathways of
plant hormones to sucrose and starch metabolism still
need to be further determined.
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