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Interspecific associations of dominant 
tree populations in a virgin old‑growth oak 
forest in the Qinling Mountains, China
Zongzheng Chai1, Caili Sun2, Dexiang Wang1* and Wenzhen Liu3

Abstract 

Background:  Understanding interspecific associations in old-growth forests will help to reveal mechanisms of 
interspecific replacement in the process of forest development and provide a theoretical basis for vegetation restora-
tion and reestablishment. In this study, we analyzed interspecific associations of eleven dominant tree populations of 
varying development stages in an old-growth oak forest stand in the Qinling Mountains, China. We examined overall 
interspecific associations (multiple species) and pairwise interspecific associations (two species).

Results:  Interspecific competition was intense during forest development and was the main factor driving succes-
sion. Community structure appears to become more stable over time which supports the harsh-benign hypothesis 
that interspecific competition is more common in stable sites.

Conclusion:  Old growth oak (Quercus spp.) forests are distributed widely around the world in part due to oak being 
a typical K-selected species. K-selected species produce fewer, high-quality offspring with higher survival rates, strong 
competitive ability, and longevity. The resulting distribution shifted from clumped to random, likely as a result of 
intense interspecific competition creating ecological niche differentiation.

Keywords:  Interspecific competition, Quercus aliena var. acutiserrata Maxim., Development stage, Association index, 
Distribution pattern
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Background
Interspecific associations are the foundation for the for-
mation and evolution of ecological communities (Haukis-
almi and Henttonen 1998; Maihaiti and Zhang 2014). 
They result from species interactions, food chain co-
actions, as well as similar responses and adaptations to 
environmental forces (Ofomata et  al. 1999; Wang et  al. 
2010). Species-specific trait differences and unique eco-
logical strategies affect population dynamics and the 
functioning of entire ecological communities (Wiegand 
et  al. 2007). Measuring interspecific associations can 
aid in understanding interactions between species, eco-
logical relationships between species, and population 

dynamics (Cole 1949; Cabaret and Hoste 1998; Ofomata 
et al. 1999).

Stable forest or climax vegetation communities are 
formed by the replacement and development of plant 
communities. Dramatic shifts in species abundance 
and composition take place during forest development 
(Liu et  al. 2014). Analyzing development pathways of 
old-growth forests can provide valuable information on 
the main drivers of forest development in the absence 
of anthropogenic influence (Abrams and Copenheaver 
1999; Petritan et al. 2014). Species competition and inter-
actions drive the process of forest development. Species 
that compete with each other are those that occur in the 
same seral community and require the same habitat con-
ditions (Parrish and Bazzaz 1982). Research on interspe-
cific associations of tree species in old-growth forests will 
help to reveal mechanisms of interspecific replacement 
in the process of development and provide a theoretical 
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basis for vegetation restoration and reestablishment 
(Maihaiti and Zhang 2014; Wang et al. 2010).

Mixed forests dominated by oak (Quercus spp.) and 
pure stands of oak are widely distributed globally. How-
ever, oak forests have poor natural regeneration (Cow-
ell et al. 2010; Galbraith and Martin 2005; McCune and 
Cottam 1985; Nowacki and Abrams 2008; Shotola et  al. 
1992). Prior researches have suggested that significant 
compositional changes are occurring in oak-dominated 
forests and Quercus spp. are being replaced by meso-
phytic, relatively shade-tolerant species such as maple 
(Acer spp.) (Crow 1988; Dech et  al. 2008; Gardiner and 
Hodges 1988; Tanouchi et al. 1994; Thadami and Ashton 
1995; Watt 1919). This dominance shift has significant 
implications for biodiversity and ecosystems function, 
and has become an important focus of research and 
management (McEwan et  al. 2011). Will shade-tolerant 
species ultimately replace oak species and become the 
dominant canopy species? If this is the case, then why are 
oak forests still widely distributed and dominant globally? 
Those questions can be addressed through examining 
interspecific associations.

Distribution patterns of trees can provide informa-
tion on structural characteristics and forest dynamics 
related to the development stage of the forest (Akhavan 
et al. 2012; Hao et al. 2007). Abundance and composition 
changes take place during forest development and there 
are periods of relatively intense interspecific competition 
that limit coexistence (Mooney et al. 2008) and affect dis-
tribution patterns. A major focus of ecological research 
is to understand the outcomes of biological interactions 
and ecological process by analyzing spatial distribution 
patterns and associations (Li et al. 2014a).

In the present study, we analyzed the interspecific asso-
ciations of eleven dominant tree populations during the 
development of a virgin old-growth oak broad-leaved 
mixed forest stand in the Qinling Mountains, China. 
Overall interspecific association (multiple species) and 
pairwise interspecific association (two species) were 
examined. We aim to answer the following questions: 
(1) are there significant changes in interspecific associa-
tions during the development of the forest stand? (2) can 
interspecific associations contribute to some evidence to 
explain the dominance of oak forests worldwide? (3) are 
there significant differences in species distribution dur-
ing the development of the forest stand? (4) how are spe-
cies distribution patterns and interspecific associations 
related?

Methods
Study area
The Qinling Mountains are located in a transitional region 
between the subtropical zone and warm temperate zone 

of central China. This region has high biodiversity and is 
ecological important (Yu et al. 2014; Zhao et al. 2014). The 
forests in the region have been harvested since the 1950s 
and much of the area is now covered by secondary growth 
that has low productivity and community stability (Chai 
and Wang 2016; Chai et al. 2016a; Li et al. 2004). Few old-
growth forest stands exist in the Qinling Mountains.

The study took place in the western area of the Qin-
ling mounatins on Xiaolong Mountain (104°22′–106°43′ 
E, 33°30′–34°49′ N). Altitude ranges between 1442 and 
2489  masl. The mountain range (EW length 212.50  km, 
NS width 146.50 km) is a watershed of the upper reaches 
of the Yangtze and Yellow rivers (Zhao et al. 2008). This 
area is typical natural secondary forest with high biodi-
versity and abundant tree cover. The region experiences 
a mild and humid continental monsoon climate with a 
mean annual temperature of 9.5 °C. The annual sunshine 
hours are 2098 and the frost-free period is 185 days. The 
annual rainfall is 460–800 mm most of which falls from 
July to September (Chai et al. 2016b).

Data collection
A field survey was conducted in the core zone of Baihua 
forest region from July to September, 2011 in the Xiao-
longshan Mountains. Vegetation is a virgin old-growth 
(>100  years) oak broad-leaved mixed forest, and was 
representative of the remaining old-growth oak forest at 
mid-altitude in the Xiaolongshan Mountains. We estab-
lished a permanent 140  ×  70  m plot with an average 
elevation of 1723  m and a stand density of 887.70 trees 
hm−2. The plot was established away from roads and vil-
lages, where human disturbance is limited (Chai et  al. 
2016b).

To accurately locate trees, the plot was divided into 
50, 14 × 14 m subplots (Fig. 1). All trees with a diameter 
at breast height (DBH; 1.3 m) ≥5 cm were marked, and 
their locations were recorded using a total station (TOP-
CON-GTS-602AF, Fig.  1). Canopy cover, slope aspect, 
DBH, tree height, and species identity were recorded. 
To compare the structural differences among individu-
als within the same population, each tree was assigned 
a growth stage according to the size of the tree: juvenile 
(5 ≤ DBH < 10 cm), medium (10 ≤ DBH < 25 cm), and 
large (DBH ≥ 25 cm) (Chai et al. 2016b). This work was 
conducted based on Forestry Standards “Observation 
Methodology for Long-term Forest Ecosystem Research” 
of People’s Republic of China (LY/T 1952–2011).

Data analysis
Importance values (IVs)
The Importance value (IV) of species is defined as the 
average of relative density (RD), relative frequency (RF), 
and relative dominance (Rd) of that species and was 
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calculated using the following equations (Arbainsyah 
et al. 2014; Chai et al. 2016a, b):

Contingency table
A 2 ×  2 contingency table or species association table 
was generated (Table 1). For each pair of species A and B, 
we can obtain the following:

Density (D)=
Number of individuals of a species

Area of all sample units

Relative abundance (RD) =
Number of individuals of a species

Density for all species

× 100%

Frequency (F) =
Number of quadrats containing a certain specis

Total number of quadrats

Relative frequency (RF) =
Frequency of a certain species

Total number of species
× 100%

Dominance (d) =
Basal area of a species

Area of all sample units

Relative dominance (Rd) =
Dominance of one specis

Domiance of all species
× 100%

IV = (RD + RF + Rd)/3

a	� the number of samples in which species A and 
B co-occurred

b	� the number of samples in which species A 
occurs, but not B

c	� the number of samples in which species B 
occurs, but not A

d	� the number of samples in which neither A nor 
B are found

N	� the total number of samples.

Test of species association (two‑species case)
To test for interspecific associations, a null hypothesis 
stating that species are independent was used. A cor-
rected Chi square test (Yates’s correction formula) was 
used to test the null hypothesis of independence in the 
2 × 2 contingency table (Yarranton 1966; Zaal 1993).

When χ2 < 3.841, there is no interspecific association; 
when 3.841 ≤  χ2  < 6.635, there are certain associations 
between species; when χ2 ≥  6.635, there are significant 
associations between species. When ad > bc, the inter-
specific association is positive, and when ad < bc, the 
interspecific association is negative.

χ2
=

N
[∣

∣ad − bc
∣

∣

− N
/

2
]2

(a+ b)(c + d)(a+ c)(b+ d)

Fig. 1  Spatial distributions of eleven dominant tree populations of different stages in a 0.98 ha (140 × 70 m) old-growth oak broad-leaved mixed 
forest plot in the Qinling Mountains, China. QA is Quercus aliena var. acutiserrata Maxim.; AC is Acer caesium subsp. giraldii (Pax) E. Murr.; UG is Ulmus 
propinqua Koidz.; CP is Cerasus polytricha (Koehne) Yü et Li; SP is Symplocos paniculata (Thunb.) Miq.; AG is Acer ginnala Maxim.; PA is Pinus armandii 
Franch.; CK is Crataegus kansuensis Wils.; MH is Malus hupehensis (Pamp.) Rehd.; TV is Toxicodendron vernicifluum (Stokes) F. A. Barkl.; QL is Quercus 
wutaishanica Blume. Juvenile tree means 5 cm ≤ DBH < 10 cm, Medium tree means 10 cm ≤ DBH < 25 cm, and large tree means DBH ≥ 25 cm
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Measures of species association (two‑species case)
To test the strength of associations and association coef-
ficient (AC) index (Hurlbert 1969; Ofomata et al. 1999; Su 
et al. 2015) was used to further verify the results of the 
Chi square test.

When ad ≥ bc AC =
(ad−bc)

[(a+b)(b+d)]

When ad < bc and d ≥ a AC =
(ad−bc)

[(a+b)(a+c)]

When ad < bc and d < a AC =
(ad−bc)

[(b+d)(c+d)]

AC index assumes values from 1 for complete positive 
associations (b =  0, c =  0) to −1 for complete negative 
associations (a = 0, d = 0). It equals zero when there is 
no association.

Overall species association (multiple‑species case)
The variance in total species number (or total density of 
individuals) in samples was compared to the sum of the 
variance of the individual species using the following 
equation (Schluter 1984):

S2T is calculated:

where N = the number of samples, Tj = the total number 
of species in sample j, and t = the mean number of spe-
cies per sample.
δ2i  is given by:

where Xij =  the abundance of species i in sample j; and 
ti = the mean abundance of species i. When V = 1 under 
the assumption of independence, and V  ≠  1, indicates 
that the species tend to covary positively (V > 1) or nega-
tively (V < 1) in their abundances. The significance of the 
association indices were assessed at P < 0.05 (Death 2000; 
Forbes et al. 1994; Schluter 1984).

V =

S2T
∑

δ2i

s2T =

(

1
/

N
)

N
∑

j

(

Tj − t
)2

δ2i =

(

1
/

N
)

N
∑

j

(

Xij − tj
)2

Uniform angle index (W)
The uniform angle index (W) describes the degree of 
regularity for the four neighbors that are nearest to refer-
ence tree i. W is defined as the proportion of the angle (α) 
smaller than the standard angle α0 (72°), expressed as:

where Nsp is the number of trees of species sp in the 
community.

W has a series of flexible values at five different levels 
(0.00, 0.25, 0.50, 0.75, and 1.00), and the average uniform 
angle index (W̄ ) for the random case was defined by the 
bounds (0.475, 0.517). A W̄ -value of less than 0.475 cor-
responds to a regular distribution and values exceed-
ing 0.517 correspond to a clumped distribution (Gadow 
and Hui 2002; Li et al. 2014b). To eliminate edge effects 
and improve the accuracy of the uniform angle index, 
we established a 5 m buffer zone around the plot. In the 
statistical analysis, only the trees in the reduced window 
(130 × 60 m) were used as reference trees, and the indi-
vidual trees in the buffer zone were only considered as 
nearest neighbors of the trees in the reduced window (Li 
et al. 2014b). This edge correction can individually evalu-
ate each tree to determine whether all n nearest neigh-
bors are truly located within the plot.

R version 3.1.3 (R Core Team 2015) was used for all 
statistical analyses. The species association indices were 
conducted using the “spaa” package (Zhang and Ma 
2014), the spatial association and uniform angle index 
were conducted using “spatstat” package (Baddeley and 
Turner 2005) and “forestSAS” package (Chai 2016)

Results
Species composition and importance value (IV) 
characteristics
A total of 48 tree species were identified belonging to 
29 genera and 16 families (Table  2). The families with 
the greatest number of species were Rosaceae (N =  12, 
25.00 %), Aceraceae (N = 9, 18.75 %), Betulaceae (N = 4, 
8.33  %), Fagaceae (N  =  3, 6.25  %), Tiliaceae (N  =  3, 
6.25  %), and Ulmaceae (N =  3, 6.25  %). The number of 
juvenile tree species was 40 (27 genera, 16 families), 
medium was 29 (20 genera, 14 families), and large was 18 
(12 genera, 9 families).

We identified Quercus aliena var. acutiserrata Maxim., 
Acer caesium subsp. giraldii (Pax) E.Murr., Ulmus pro-
pinqua Koidz., Cerasus polytricha (Koehne) Yü et Li, 

Wi =

1

4

n
∑

j=1

zij , zij =

{

1 ifα − angle is smaller thanα0
0, otherwise

}

W̄ =

1

Nsp
Wi =

1

4Nsp

Nsp
∑

i=1

4
∑

j=1

zij

Table 1  2  ×  2 contingency table or species association 
table

Species B ∑

Present Absent

Species A Present a b m = a + b

Absent c d n = c + d

∑ r = a + c s = b + d N = a + b + c + d
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Table 2  Composition and  importance value (IV) index of  the tree species in  different development stages in  an old-
growth oak broad-leaved mixed forest

Species Family Density (trees ha−1) Importance value (%)

Juvenile Medium Large All

Quercus aliena var. acutiserrata Maxim Fagaceae 190.82 4.79 ± 0.08 31.57 ± 0.18 50.7 ± 0.28 27.13 ± 0.1

Acer caesium subsp. giraldii (Pax) E.Murr Aceraceae 137.76 25.5 ± 0.17 13.75 ± 0.14 4.59 ± 0.16 13.6 ± 0.08

Ulmus propinqua Koidz Ulmaceae 77.55 0.72 ± 0.03 12.04 ± 0.15 20.79 ± 0.25 12.56 ± 0.09

Cerasus polytricha (Koehne) Yü et Li Rosaceae 60.2 9.94 ± 0.11 6.26 ± 0.1 – 5.58 ± 0.05

Symplocos paniculata (Thunb.) Miq. Symplocaceae 58.16 14.47 ± 0.13 0.54 ± 0.04 – 4.81 ± 0.04

Acer ginnala Maxim. Aceraceae 57.14 6.66 ± 0.1 8.46 ± 0.12 1.93 ± 0.06 6.67 ± 0.05

Pinus armandii Franch. Pinaceae 56.12 7 ± 0.11 7.07 ± 0.09 2.62 ± 0.07 6.18 ± 0.06

Crataegus kansuensis Wils Rosaceae 47.96 14.73 ± 0.14 0.39 ± 0.02 – 4.7 ± 0.04

Malus hupehensis (Pamp.) Rehd Rosaceae 32.65 1.21 ± 0.04 5.19 ± 0.1 3.93 ± 0.12 3.73 ± 0.05

Toxicodendron vernicifluum (Stokes) F. A. Barkl. Anacardiaceae 22.45 0.89 ± 0.04 4.55 ± 0.08 0.56 ± 0.03 2.6 ± 0.04

Quercus wutaishanica Blume Fagaceae 18.37 0.23 ± 0.02 2.52 ± 0.07 3.32 ± 0.1 2.95 ± 0.06

Tilia paucicostata Maxim Tiliaceae 12.24 0.88 ± 0.03 0.77 ± 0.03 0.74 ± 0.03 0.98 ± 0.02

Acer cappadocicum Gled Aceraceae 11.22 1.04 ± 0.04 1.13 ± 0.03 – 0.72 ± 0.02

Lindera obtusiloba Bl. Lauraceae 11.22 1.66 ± 0.05 0.83 ± 0.03 – 0.87 ± 0.02

Acer davidii Franch. Aceraceae 10.2 1.17 ± 0.04 1.08 ± 0.03 – 0.79 ± 0.02

Morus alba Linn. Moraceae 10.2 1.48 ± 0.04 0.1 ± 0.01 – 0.62 ± 0.02

Acer tetramerum var. betulifolium (Maxim.) Rehd Aceraceae 7.14 1.22 ± 0.04 – – 0.36 ± 0.01

Carya cathayensis Sarg Juglandaceae 6.12 0.77 ± 0.03 0.27 ± 0.02 1.53 ± 0.08 0.84 ± 0.03

Kalopanax septemlobus (Thunb.) Koidz Araliaceae 5.1 0.55 ± 0.03 0.71 ± 0.03 – 0.41 ± 0.02

Tilia oliveri Szyszyl Tiliaceae 4.08 – 0.44 ± 0.02 0.48 ± 0.02 0.4 ± 0.01

Meliosma cuneifolia var. glabriuscula Cufod Sabiaceae 4.08 0.48 ± 0.02 – – 0.16 ± 0.01

Acer elegantulum Fang et P. L. Chiu Aceraceae 4.08 0.3 ± 0.02 0.29 ± 0.02 0.26 ± 0.02 0.27 ± 0.01

Padus racemosa (Linn.) Gilib Rosaceae 3.06 0.43 ± 0.02 0.1 ± 0.01 – 0.14 ± 0.01

Amygdalus persica L. Rosaceae 3.06 0.28 ± 0.02 0.34 ± 0.02 0.32 ± 0.02 0.34 ± 0.02

Ulmus macrocarpa Hance Ulmaceae 3.06 – 0.29 ± 0.02 0.43 ± 0.03 0.31 ± 0.02

Tilia oliveri Tiliaceae 2.04 0.31 ± 0.02 – – 0.09 ± 0

Betula platyphylla Suk Betulaceae 2.04 – 0.13 ± 0.01 0.41 ± 0.03 0.2 ± 0.01

Corylus heterophylla var. sutchuenensis Franch Betulaceae 2.04 0.18 ± 0.01 – – 0.08 ± 0.01

Pyrus betulifolia Bge. Rosaceae 2.04 0.22 ± 0.02 – 0.37 ± 0.03 0.22 ± 0.01

Acer henryi Pax Aceraceae 2.04 – 0.42 ± 0.02 – 0.17 ± 0.01

Pyrus xerophila Yü Rosaceae 2.04 0.31 ± 0.02 – – 0.09 ± 0

Corylus heterophylla Fisch Betulaceae 2.04 0.48 ± 0.02 – – 0.13 ± 0.01

Spiraea alpina Pall Rosaceae 2.04 0.14 ± 0.01 0.19 ± 0.01 – 0.12 ± 0.01

Rhus potaninii Maxim. Anacardiaceae 2.04 – 0.22 ± 0.02 0.32 ± 0.02 0.18 ± 0.01

Pinus tabulaeformis Carr. Pinaceae 2.04 – – 0.72 ± 0.04 0.33 ± 0.02

Staphylea holocarpa Hemsl. Staphyleaceae 1.02 0.29 ± 0.02 – – 0.06 ± 0

Quercus spinosa David ex Franchet Fagaceae 1.02 0.21 ± 0.02 – – 0.09 ± 0.01

Celtis koraiensis Nakai Ulmaceae 1.02 0.16 ± 0.01 – – 0.05 ± 0

Sorbus hupehensis Schneid. Rosaceae 1.02 0.11 ± 0.01 – – 0.04 ± 0

Morus australis Poir. Moraceae 1.02 0.16 ± 0.01 – – 0.04 ± 0

Acer palmatum Thunb. Aceraceae 1.02 0.17 ± 0.01 – – 0.04 ± 0

Prunus salicina Linn. Rosaceae 1.02 0.18 ± 0.01 – – 0.05 ± 0

Carpinus cordata Bl. Betulaceae 1.02 0.15 ± 0.01 – – 0.03 ± 0

Fraxinus paxiana Lingelsh. Oleaceae 1.02 0.18 ± 0.01 – – 0.06 ± 0

Acer tsinglingense Fang et Hsieh. Aceraceae 1.02 – 0.12 ± 0.01 – 0.07 ± 0

Sorbus alnifolia (Sieb. et Zucc.) K. Koch Rosaceae 1.02 0.2 ± 0.01 – – 0.04 ± 0

Amelanchier sinica (Schneid.) Chun Rosaceae 1.02 0.15 ± 0.01 – – 0.04 ± 0

Fraxinus platypoda Oliver Oleaceae 1.02 – 0.22 ± 0.02 – 0.06 ± 0

Juvenile tree means 5 cm ≤ DBH < 10 cm, Medium tree means 10 cm ≤ DBH < 25 cm, Large tree means DBH ≥ 25 cm, and All refers to all tree populations with 
DBH ≥ 5 cm in the studied plot
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Symplocos paniculata (Thunb.) Miq., Acer ginnala 
Maxim., Pinus armandii Franch., Crataegus kansuensis 
Wils., Malus hupehensis (Pamp.) Rehd., Toxicodendron 
vernicifluum (Stokes) F. A. Barkl., and Quercus wutais-
hanica Blume as the dominant tree populations (first 11 
tree populations in Table 2) accounting for 85.5 % of the 
total overstory density (DBH ≥ 5 cm).

Species importance values showed obvious differ-
ences at different development stages. The tree species Q. 
aliena var. acutiserrata, U. propinqua, and Q. wutaishan-
ica increased, while, A. caesium subsp. giraldii, P. arman-
dii, T. paucicostata, and A. elegantulum decreased as the 
forest stand developed (Table 2).

Population structure of dominant tree populations
The forest stand showed a reverse J-shaped distribution 
of tree diameters when all species were pooled. A total 
of 41.30 % of individuals were juvenile trees with a DBH 
class of 5–10  cm (Fig.  2). Extra-large (DBH  ≥  45  cm) 
trees species were concentrated in populations of Q. 
aliena var. acutiserrata, U. propinqua, A. ginnala and Q. 
wutaishanica (Fig. 2).

The 11 dominant tree populations showed great vari-
ability in abundance at different growth stages (Fig.  2). 
The size frequency distribution of the tree species indi-
cated that Q. aliena var. acutiserrata, U. propinqua, M. 
hupehensis, T. vernicifluum, and Q. wutaishanica had a 
unimodal distribution. While, A. caesium subsp. giral-
dii, C. polytricha, S. paniculata, A. ginnala, P. armandii, 
and C. kansuensis showed an inverse J-shaped population 
structure suggesting they were the most dominant juve-
nile trees (Fig. 2).

Overall species associations
The overall interspecific association of 11 dominant tree 
populations presented in Table 3. For the total dominant 
tree populations, the overall negative association (V < 1) 
was significant.

For both the juvenile and medium tree stages the 
association was not significant. By contrast, large trees 
showed a significantly negative overall association. The 
overall association among different development stages 
was negative and suggests that the interspecific competi-
tion increases with stand development.

Test of species association
The χ2 test showed that among total dominant tree popu-
lations, 21 pairs (38.18 %) showed a positive association, 
31 pairs (56.36  %) showed a negative association, and 3 
pairs (5.45 %) showed no association (Fig. 3d). A statisti-
cally significant positive association was found between 
C. kansuensis and M. hupehensis (χ2 =  6.88, P  <  0.01), 

and a significantly negative association between S. pan-
iculata and C. kansuensis (χ2 = −4.02, 0.01 < P < 0.05).

The proportion of negative associations increased 
slightly from juvenile (52.70  %) to medium (56.40  %) to 
large (71.40 %) trees suggesting that negative associations 
increase with stand age (Fig.  3a–c). In the juvenile tree 
populations, significantly positive associated pair were U. 
propinqua and A. ginnala (χ2 = 4.52, 0.01 < P < 0.05), and 
negative associated pair were A. ginnala and P. armandii 
(χ2 = −4.11, 0.01 < P < 0.05). In the medium tree popula-
tions there were no significantly associated pairs. In the 
large tree populations the significantly positive associated 
pair was Q. aliena var. acutiserrata and A. caesium subsp. 
giraldii (χ2 = −3.89, 0.01 < P < 0.05). Overall, there were 
few significant associations among dominant tree popu-
lations. This suggests that species associations were weak 
for most species pairs, and the distribution of tree species 
is independent.

Measures of species association
The AC index showed that among total dominant tree 
populations, 22 pairs (40 %) showed positive association 
and 33 pairs (60 %) showed negative associations. Highly 
positive associations (0.5 ≤ AC ≤ 1) were Q. aliena var. 
acutiserrata with U. propinqua, P. armandii, M. hup-
ehensis, T. vernicifluum, and Q. wutaishanica; and the 
species pair C. kansuensis and M. hupehensis. Highly 
negative associations (−1 ≤ AC ≤ −0.5) were Q. aliena 
var. acutiserrata with A. caesium subsp. giraldii, C. pol-
ytricha, S. paniculata, A. ginnala, and C. kansuensis. 
The AC index showed that species pair C. kansuensis 
and M. hupehensis had the higher positive association 
(AC =  0.62), and U. propinqua and T. vernicifluum had 
the higher negative association (AC = −0.46), which was 
consistent with the results of the χ2 test (Fig. 4d).

The AC index of juvenile trees showed that 20 pairs 
(36.36  %) had positive association, 32 pairs (58.18  %) 
showed negative association, and 3 pairs (5.45 %) had no 
association. Highly positive associations (0.5 ≤ AC ≤ 1) 
of A. caesium subsp. giraldii were found with U. propin-
qua and Q. wutaishanica. Highly negative associations 
(−1 ≤ AC ≤ −0.5) of Q. wutaishanica were found with 
most other species except A. caesium subsp. giraldii, and 
the species pairs U. propinqua and M. hupehensis, U. pro-
pinqua and T. vernicifluum, A. ginnala and P. armandii, 
A. ginnala and M. hupehensis, and M. hupehensis and T. 
vernicifluum also exhibited highly negative associations. 
AC index showed that the species pair U. propinqua and 
A. ginnala had positive association (AC =  0.14), and U. 
propinqua and T. vernicifluum had negative association 
(AC = −0.56), which were consistent with the results of 
the χ2 test (Fig. 4a).



Page 7 of 13Chai et al. Bot Stud  (2016) 57:23 

In the development stage of medium trees, AC associa-
tion showed that 18 pairs (32.73 %) showed positive asso-
ciation, 36 pairs (65.46  %) showed negative association, 
and 1 (1.82 %) was no association. Highly positive asso-
ciations (0.5 ≤ AC ≤ 1) were Q. aliena var. acutiserrata 
with S. paniculata, C. kansuensis, and T. vernicifluum; 
A. caesium subsp. giraldii with S. paniculata, C. kans-
uensis. Highly negative associations (−1 ≤  AC ≤ −0.5) 
were Q. wutaishanica with A. caesium subsp. giraldii, S. 
paniculata, A. ginnala, P. armandii and C. kansuensis; S. 

paniculata with Q. aliena var. acutiserrata, C. polytricha, 
A. ginnala, P. armandii, C. kansuensis, M. hupehensis, T. 
vernicifluum, (Fig. 4b).

In the development stage of large trees, AC asso-
ciation showed that 8 pairs (28.57  %) showed positive 
association, 20 pairs (71.43 %) showed negative associa-
tion. Highly positive associations (0.5 ≤  AC ≤  1) were 
Q. aliena var. acutiserrata with A. ginnala, T. vernici-
fluum. Highly negative association (−1  ≤  AC  ≤  −0.5) 
were T. vernicifluum with A. caesium subsp. giraldii, U. 

Fig. 2  The DBH class distributions of eleven dominant tree populations and total forest (All) in an old-growth oak broad-leaved mixed forest in the 
Qinling Mountains, China. See above for abbreviations

Table 3  The overall association among dominant tree populations in different development stages

Development stages δi
2 ST

2 Variance ratio (V) W statistic χ2 (χ2

0.95
, N, χ2

0.05
, N) Overall association

Juvenile 1.785 1.320 0.740 36.979 (34.765,67.505) N = 50 No significant negative

Medium 1.918 1.560 0.813 40.678 No significant negative

Large 1.003 0.680 0.678 31.857 Significantly negative

All 2.130 1.434 0.673 33.659 Significantly negative
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propinqua, A. ginnala, P. armandii, M. hupehensis, and 
Q. wutaishanica; M. hupehensis with Q. wutaishanica, P. 
armandii; and the species pair A. ginnala and P. arman-
dii. AC index showed that Q. aliena var. acutiserrata and 
A. caesium subsp. giraldii with higher negative associa-
tion (AC = −0.41), which was consistent with the results 
of the χ2 test (Fig. 4c).

Discussion
Interspecific competition increased with the develop-
ment of the old-growth oak broad-leaved mixed forest 
stand. Negative associations among species are indicative 
of interspecific competition (Rejmánek and Lepš 1996). 
Negative interspecific associations dominated overall 
interspecific association (multiple species) and pairwise 

Fig. 3  Semi-matrix graph of interspecific correction χ2 test of association of dominant tree populations in an old-growth oak broad-leaved mixed 
forest in the Qinling Mountains, China. a is development stage of juvenile tree (5 cm ≤ DBH < 10 cm); b is development stage of medium tree 
(10 cm ≤ DBH < 25 cm); c is development stage of large tree (DBH ≥ 25 cm); and d is total forest (DBH ≥ 5 cm). When χ2 ≥ 6.635, extra sig-
nificant positive association; 3.841 ≤ χ2 < 6.635, significant positive association; −3.841 ≤ χ2 < 3.841, no association, independent distribution; 
−6.635 ≤ χ2 < −3.841, significant negative association; χ2 < −6.635, Extra significant negative association. See above for abbreviations
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interspecific association (two species) in the old-growth 
oak broad-leaved mixed forest of the Xiaolong Moun-
tains. This suggests that interspecific competition is 
very intense, which is similar to the findings by Ma et al. 
(2014) and Fraver et al. (2014) who found that interspe-
cific competition continues to influence forest processes 
and structure in undisturbed old-growth forests. The 
increasing negative associations with increasing forest 
stages are consistent with the harsh-benign hypothesis 
(Peckarsky 1983). The harsh-benign hypothesis predicts 

that competitive interactions are more likely in stable 
environments and negative interspecific associations 
occur more often in stable sites than the unstable sites 
(Death 2000; Peckarsky 1983). The same results have 
been reported in many other studies (Hao et  al. 2007; 
Liu et al. 2014). Old-growth oak broad-leaved mixed for-
ests over 100 years old have reached a late-successional 
stage and the AC index network corroborated this theory 
(Fig. 5). Forests dominated by Q. aliena var. acutiserrata, 
T. vernicifluum, and A. ginnala, are typical stable forest 

Fig. 4  Semi-matrix graph of AC interspecific coefficient of dominant tree populations in an old-growth oak broad-leaved mixed forest 
in the Qinling Mountains, China. a is development stage of juvenile tree (5 cm ≤ DBH < 10 cm); b is development stage of medium tree 
(10 cm ≤ DBH < 25 cm); c is development stage of large tree (DBH ≥ 25 cm); and d is total forest (DBH ≥ 5 cm). See above for abbreviations
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communities distributed in mid-mountain zones of Qin-
ling Mountains (Lei et  al. 1996). Our results further 
support the harsh-benign hypothesis that species inter-
actions are more common in stable sites.

Oak forests are distributed widely around the world, 
in part because it is a typical K-selected species. Mixed 
and pure stands of oak can adapt to a wide variety of 
site and soil conditions (Abrams et  al. 1998; Alvarez 
et  al. 2009; Collins and Battaglia 2008), however, glob-
ally Quercus species generally have poor natural regen-
eration in the forests where they occur (Crow 1988; Dech 
et  al. 2008; Gardiner and Hodges 1988; Tanouchi et  al. 
1994; Thadami and Ashton 1995; Watt 1919) and this 
same trend was observed in the oak forests of the Qin-
ling Mountains (Chai and Wang 2016; Yu et  al. 2013a). 
Yu et al. (2013b) noted that there could be strong com-
petition for seed dispersers among co-occurring species, 
so variation in seed size and other seed traits may shape 
the behavior of dispersers. Quercus are large seed spe-
cies with a low seedset and is a rodent-dispersed species. 

Previous studies have shown that oak seeds were usually 
transported to adjacent pine forests by rodents, resulting 
poor natural regeneration in the oak forests where they 
occur (Chang et  al. 2012; Yu et  al. 2013b). The calcu-
lated importance values may support this phenomenon 
as there were significantly fewer juvenile oak trees than 
other species (Table 2). However, the hard shell and high 
nutritional content (e.g., protein, fat, and starch) of oak 
seeds (Chang et al. 2012) result in high-quality offspring 
and competitive ability for those that do establish. This 
phenomenon is reflected in the importance values of 
medium and large trees and results in its dominance in 
older forest stands (Table 2). In addition, long-living tree 
species are able to maintain their dominance in a forest 
stand even if they only regenerate successfully once over 
many years (Warner and Chesson 1985). The findings of 
Hou et al. (2004) in a Quercus-Betula forest in northern 
China showed that the longevity of Quercus combined 
with its dominance in the stand can compensate for the 
low regeneration and allow them to persist. Yu et  al. 

Fig. 5  Network of Association coefficient index in an old-growth oak broad-leaved mixed forest in the Qinling Mountains, China. a is development 
stage of juvenile tree (5 cm ≤ DBH < 10 cm); b is development stage of medium tree (10 cm ≤ DBH < 25 cm); c is development stage of large tree 
(DBH ≥ 25 cm); and d is total forest (DBH ≥ 5 cm). See above for abbreviations
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(2013a) further corroborated this result by finding that Q. 
aliena var. acutiserrata regeneration was not affected by 
low establishment. These results all suggest that despite 
low regeneration, oak populations will maintain their 
dominance if there are no large-scale disturbances in the 
Qinling Mountains.

Observed distribution patterns of tree species maybe 
the result of ecological niche differentiation due to the 
intense interspecific competition. Species interactions 
influence ecological processes such as growth, regen-
eration and mortality which in turn influence tree distri-
bution (Bieng et  al. 2013; Kang et  al. 2014). Our results 
showed that there are obvious differences among the 
eleven dominant tree populations during the develop-
ment of the forest stand but the overall distribution is 
random (Fig. 6). This suggests that the forest is in a sta-
ble  state. Some researches explain this phenomenon as 
a long-term species interaction between the plant com-
munity and environment (Hao et al. 2007; Liu et al. 2014; 
Nathan 2006; Schoolmaster 2013). We conclude that 
the shift from clumped to random as the forest stand 
developed maybe evidence for niche differentiation and 
selection of species composition through the sieve of 
interspecific relations. This is supported by Zaal (1993) 
and Getzin et al. (2006) who found that spatial distribu-
tion and tree size are not independent patterns but are 
commonly affected by the interspecific competition. Par-
rish and Bazzaz (1982) showed that early successional 
species of plants have broad, overlapping niche occupa-
tion on many gradients, whereas later successional spe-
cies show more niche differentiation. Call and Nilsen 
(2003) and Su et  al. (2015) also support the theory that 

species pairs with positive associations share similar 
resources and exhibit a wide niche overlap, while nega-
tive association indicate that plants have different habitat 
and resource requirements.

Conclusion
Old growth oak (Quercus spp.) forests are distributed 
widely around the world in part due to oak being a typi-
cal K-selected species. K-selected species produce fewer, 
high-quality offspring with higher survival rates, strong 
competitive ability, and longevity. Interspecific compe-
tition was intense during forest development and was 
the main factor driving succession, which supports the 
harsh-benign hypothesis that interspecific competition 
is more common in stable sites. The resulting distribu-
tion shifted from clumped to random, likely as a result 
of intense interspecific competition creating ecological 
niche differentiation.
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