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Microarray meta‑analysis to explore 
abiotic stress‑specific gene expression patterns 
in Arabidopsis
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Abstract 

Background:  Abiotic stresses are the major limiting factors that affect plant growth, development, yield and final 
quality. Deciphering the underlying mechanisms of plants’ adaptations to stresses using few datasets might overlook 
the different aspects of stress tolerance in plants, which might be simultaneously and consequently operated in the 
system. Fortunately, the accumulated microarray expression data offer an opportunity to infer abiotic stress-specific 
gene expression patterns through meta-analysis. In this study, we propose to combine microarray gene expression 
data under control, cold, drought, heat, and salt conditions and determined modules (gene sets) of genes highly asso‑
ciated with each other according to the observed expression data.

Results:  By analyzing the expression variations of the Eigen genes from different conditions, we had identified two, 
three, and five gene modules as cold-, heat-, and salt-specific modules, respectively. Most of the cold- or heat-specific 
modules were differentially expressed to a particular degree in shoot samples, while most of the salt-specific modules 
were differentially expressed to a particular degree in root samples. A gene ontology (GO) analysis on the stress-
specific modules suggested that the gene modules exclusively enriched stress-related GO terms and that different 
genes under the same GO terms may be alternatively disturbed in different conditions. The gene regulatory events for 
two genes, DREB1A and DEAR1, in the cold-specific gene module had also been validated, as evidenced through the 
literature search.

Conclusions:  Our protocols study the specificity of the gene modules that were specifically activated under a par‑
ticular type of abiotic stress. The biplot can also assist to visualize the stress-specific gene modules. In conclusion, our 
approach has the potential to further elucidate mechanisms in plants and beneficial for future experiments design 
under different abiotic stresses.

Keywords:  Abiotic stress, Gene module, The coefficient of intrinsic dependence, Analysis of variance, The weighted 
gene co-expression network analysis, Singular value decomposition, Biplot
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Background
Facing the challenge of climate change, raising crop 
production to feed enough people indicates to increase 
the tolerance of plants to severe environments (Ron-
ald 2011). Plant is a sessile organism and must maintain 
a complex system of genetic expression to accommo-
date the impacts of different environments in order to 

survive with success (Trewavas 2003). When the plant 
is subjected to a stress, genes coded on its DNA usually 
take the initial actions required to trigger proper self-
defensive mechanisms (Sachs and Ho 1986). It is there-
fore straightforward to monitor gene expression patterns 
and their interactions as the first step to deciphering the 
underlying mechanisms of a plant subjected to stresses. 
Embraced by rapidly developed biotechnologies, it has 
become very convenient to accurately monitor global 
gene expression under different circumstances in living 
organisms (Ritchie et al. 2015). Although the sequencing 
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of messenger RNA by the latest generation of sequenc-
ing technology (also known as RNA-Sequencing or RNA-
Seq) is more straightforward, sensitive, and accurate in 
terms of the quantification of gene expressions, the sys-
tematic error rates and costs of said technology remain 
high compared to those of microarray technology, which 
has been in use for more than two decades (Mantione 
et al. 2014).

After collecting a global set of gene expressions, finding 
differentially expressed genes is the first step in decipher-
ing the underlying mechanisms of a plant that copes with 
stress. In addition, biologists have recently been asking 
more about the systematic explanations of gene expres-
sion patterns. (e.g., Atkinson and Urwin 2012; Hahn et al. 
2013; Priest et  al. 2014). Such inquiries have motivated 
the advancement of gene set analysis and the utilization 
of microarray data to make inferences regarding genetic 
networks. Gene set analysis concerns the disturbed gene 
sets instead of individual genes whereas the gene sets 
of interest are predetermined (e.g., the co-expressed 
genes, the genes in the same category of the gene ontol-
ogy, the genes involved in the same metabolic pathway, 
etc.) (Kaever et al. 2014, 2015; Rest et al. 2016). Network 
inference, which is the focus of this study, links genes 
with edges that indicate potential associations to depict 
the possible interactions among the chosen set of genes 
(Todaka et  al. 2012; Rasmussen et  al. 2013; Nakashima 
et al. 2014).

The construction of a correlation network is one 
approach that can be taken after a microarray experi-
ment, while conducting a weighted gene co-expression 
network analysis (WGCNA) is another. The former can 
be accomplished by computing the pairwise Pearson cor-
relation coefficients of genes and connecting a given gene 
pair if the Pearson correlation coefficient exceeds a user-
specified threshold (Song et al. 2012). The choice of the 
threshold, however, might be very subjective, and differ-
ent thresholds result in networks with different topolo-
gies (Borate et al. 2009). A WGCNA, however, preserves 
all possible edges in the network but assigns different 
weights to them instead. By clustering the genes with 
high-weight edges, WGCNA is able to determine the 
modules (gene sets) of genes highly associated with each 
other according to the observed expression data. In this 
study, we further extend the application of WGCNA in 
three directions:

1.	 Instead of using the correlation coefficient as the 
measure of the association between genes, we choose 
the coefficient of intrinsic dependence (CID).

2.	 We explore stress-specific modules by conducting 
the analysis of variance on the expression levels of 
the Eigen genes representing the gene modules and 

by comparing the edge weights of the stress-specific 
modules.

3.	 A biplot is introduced to visualize the stress-specific 
modules for convenience in further interpretation.

Along with long-term development of the technology, 
a huge amount of results from a wide range of microar-
ray experiments has been accumulated. As of August 
18, 2016, data from a total of 179 microarray experi-
ments had been included in the Arabidopsis Informa-
tion Resource (TAIR) database. Typical experiments have 
consisted of several treated samples under a particular 
condition and several controlled samples as the back-
ground of comparison for the reasons of purification and 
simplicity. However, analyzing the expression patterns 
under one stressed condition versus those under control 
conditions can only reveal a corner of a huge puzzle. One 
is not able to depict an overview of the entire system or 
of the interactions between the impacts caused by differ-
ent stress sources on the living organisms. Therefore, in 
this study, we combine all possible samples from different 
stress conditions and perform a meta-analysis of the gene 
regulatory network on the combined dataset.

To that end, the coefficient of intrinsic dependence 
(CID), instead of the typical Pearson correlation coeffi-
cient, is used to measure the association between genes 
because the Pearson correlation coefficient only meas-
ures the linearity of the gene associations. However, 
past studies (Liu 2005; Liu et  al. 2009) have shown that 
a nonlinear relationship between the expressions of two 
associated genes might occur in some cases. The CID 
does not require distributional and functional assump-
tions regarding the data and is useful for analyzing noisy 
microarray data. Relatedly, while systematic errors are 
well controlled in highly developed microarray technol-
ogy, samples from different experiments contribute noise 
to each other when a meta-analysis is conducted due 
to the fact that the expression patterns from different 
experiments have a wide range of variation (Ramasamy 
et al. 2008; Campain and Yang 2010). The CID had been 
applied to investigate gene regulatory events incorpo-
rating the Galton–Pearson correlation coefficient (Liu 
et  al. 2009, 2012), to identify associations among mul-
tivariate variables (Liu and Tsai 2013), and to select rel-
evant features on a step-by-step basis according to their 
importance in relation to the target variable (Hsiao and 
Liu 2016). In this study, we strictly followed the defini-
tion and methodology of CID described in Hsiao and Liu 
(2016) and focus on utilizing the CID in measuring the 
magnitude of association in general between genes based 
on microarray gene expression data.

A CID matrix is used to construct the weighted 
gene co-expression network produced by a WGCNA. 
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According to the weighted network, gene modules con-
taining genes with similar expression patterns are then 
identified. The WGCNA further performs a princi-
ple component analysis (Pearson 1901; Hotelling 1933; 
Zhang and Horvath 2005) on the expression matrix of 
each gene module and uses the first principle compo-
nent (designated as “Eigen gene”) as the representative 
of the gene module. The expression of the Eigen gene is 
the linear combination of the expressions from all genes 
in the gene module, which has been utilized to identify 
quantitative-trait-associated gene modules by computing 
the Pearson correlation coefficient between the observed 
values of the quantitative trait and the expression levels 
of the Eigen gene (Zhang and Horvath 2005; Langfelder 
and Horvath 2008). In this study, it is the qualitative vari-
able (i.e., the treated conditions of the sample) that is of 
interest. We propose to utilize the analysis of variance for 
identification of stress-related gene modules by using the 
expression levels of the Eigen gene as the dependent vari-
able and the treatment conditions of the sample as the 
independent variable.

Finally, we present the stress-related gene module 
using a biplot (Fig. 1), which unifies the information from 
both the gene module (shown as a gray arrow) and treat-
ment conditions (shown as black arrows) in a single two-
dimension plot. The biplot was introduced by Gabriel 
(1971); Yan and Kang (2002) subsequently described vari-
ous methods for visualizing and interpreting a biplot. In 
our case, the length and direction of the projection of a 
specified condition vector on the vector of the gene mod-
ule represents the magnitude of the impact of that condi-
tion on the gene module. A biplot can also assist in the 
interpretation of stress-specific modules. For example, an 
illustration of a biplot shown in Fig. 1, gene module M10 
is up-regulated under the heat condition (as indicated 
by the acute angle between the M10 and HEAT vectors) 
but down-regulated under the cold and salt conditions 
(as indicated by the obtuse angles between the M10 and 
the COLD and SALT vectors). In addition, M10 is heat-
specific, but it cannot tell the difference between the cold 
and salt conditions (the M10 vector is close to the red 
line, which is perpendicular to the line connecting two 
condition points; see Materials and Methods).

Methods
The microarray expression data were downloaded from 
TAIR database (Huala et al. 2001). Our dataset consisted 
of 24 cold-treated, 24 salt-treated, 28 drought-treated, 16 
heat-treated, and 36 controlled time-series arrays (Addi-
tional file  1: Table S1). All 128 arrays were hybridized 
using the Affymetrix ATH1 chip, which contains 22,810 
probe sets (genes). The downloaded microarray raw data 
was preprocessed using the robust multi-array average 

(RMA) method and log2 transformed by RMAExpress 
version 1.0.5 (Bolstad et  al. 2003; Irizarry et  al. 2003a, 
b). The output of RMAExpress was taken log2 again to 
make the expression data more normally distributed 
(Additional file 2: Figure S1) in order to fulfill the essen-
tial assumption of following the analysis of variance. The 
processed microarray data were subjected to the analyses 
of variance (ANOVA) to identify the genes differentially 
expressed using the design models:

where Rijkl (Sijkl) is the normalized expression level of 
the lth replicate for the ith gene under the jth condition 
at kth time point in the root (shoot) samples; μRi (μSi) is 
the overall average expression level for the ith gene in 
the root (shoot) samples; αRj (αSj) is the condition effect 
observed in the root (shoot) samples; ατRjk (ατSjk) is the 
time effect under the jth condition in the root (shoot) 
samples; and εRijkl (εSijkl) is the sampling error. The analy-
sis of variance which we performed to determine a dif-
ferential expression gene considered the alternative 
hypothesis that the gene’s expression was significantly 
different in at least one of the cold, heat, drought, salted, 
and controlled conditions. Four p values (two for testing 

Rijkl = µRi + αRij + ατRijk + ǫRijkl

for samples of root tissues, or

Sijkl = µSi + αSij + ατSijk + ǫSijkl

for samples of shoot tissues,

Fig. 1  An illustration of a biplot. The blue line represents the connec‑
tion between two stresses, and the red line passes through the origin 
and runs perpendicular to the blue line. The gray and black arrows are 
vectors of each gene module and stress, respectively
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the conditional effects and the other two for testing time 
effects under different conditions) can be obtained from 
the above model for each gene. Combining the two p val-
ues from the root samples and the two p values from the 
shoot samples, the smallest one was designated as the 
overall p value of a gene. The most significant 2281 genes 
yielding the smallest 10% of overall p values were claimed 
to be differentially expressed in this study.

The following steps to construct the weighted gene co-
expression network were analogue to those of the well-
known WGCNA package in R (Langfelder and Horvath 
2008). The pairwise CID values for the expression lev-
els of g DE genes were computed to form the g*g CID 
matrix, C = {ci,j}, where ci,j = CID(gi|gj) for two DE genes, 
gi and gj, by setting the subgroup size of gj to be 20 (Liu 
et al. 2009). Unlike the correlation matrix, the CID matrix 
is asymmetric; that means ci,j is not necessarily equal to 
cj,i. The g*g adjacency matrix, A = {ai,j}, was set as C taken 
to the power of three to make the connectivity of the DE 
genes follow the scale-free property of the biological net-
work (Albert 2005; Pavlopoulos et al. 2011). Specifically, 
in this study, the connectivity of gene gi for the asym-
metric adjacency matrix was defined as Σjai,j = Σj≠i(ci,j)3, 
i,j = 1, …, 2281. The adjacency matrix, A, was analyzed 
by WGCNA with minModuleSize  =  60 to obtain the 
gene modules (Langfelder and Horvath 2008).

The Eigen gene of each gene module was defined as 
the first principle component of the genes in the module 
(Langfelder and Horvath 2008). We performed the singu-
lar value decomposition (SVD) toward the s by m expres-
sion matrix M = {mij}, where mij is the average expression 
level of the Eigen gene of jth (j = 1, …, m) module under 
the ith (i = 1, …, s) condition. More specifically, the SVD 
decomposed the matrix M into

where U and V are s by r left and m by r right singular 
matrices, respectively (Golub and Van Loan 1996), S is an 
r by r diagonal matrix having the singular values, and r is 
the number of non-zero values of the diagonal of S. The 
first two columns of U* and V* are referred as the first 
two principle components (PCs) that most explain the 
variability of the numbers in the rows (conditions) and 
the columns (modules) of M, respectively.

By overlaying the values of the first two PCs in U* 
and V* together in a two-dimension plot (known as 
the “biplot”), we can visualize the effects of the condi-
tions and the modules and their interactions more eas-
ily (Gabriel 1971; Yan and Kang 2002). According to the 
inner-product property of a biplot (Yan and Kang 2002), 
the projection of a module vector on a condition vector 
represents the magnitude of the effect of the gene module 

M = USV
T
=

(

US
1/ 2

)(

VS
1/ 2

)T

= U
∗
V
∗T

on the condition, or vice versa. If the angle between two 
vectors is less than 90° (greater than 90°), the gene mod-
ule is up-regulated (down-regulated) in the condition. We 
further connect two points of two conditions (for exam-
ple, the blue line in Fig. 1 represents such a connection) 
on the biplot and draw a straight line passing through 
the origin and running perpendicular to the line con-
necting two condition points (for example, the red line 
in Fig. 1). Any module vector having a small angle to the 
perpendicular line (the red line in Fig.  1) cannot effec-
tively distinguish the two conditions, meaning that simi-
lar expression levels (i.e., the projection lengths) on the 
gene module have been observed in the two conditions. 
Therefore, we claim that the gene module is specific for 
a condition if it fulfills two criteria: (1) the length of the 
gene module vector projected on the condition vector is 
relatively long, and (2) the gene module vector is almost 
perpendicular to the connected line (e.g., the blue line in 
Fig.  1) between any other two conditions. The genes in 
the stress specific gene modules were verified through 
gene ontology (GO) analysis using agriGO analytic tools 
(Du et al. 2010).

Results
Arabidopsis thaliana (Arabidopsis) microarray expres-
sion data consisting of 22,810 probe sets (genes) and 216 
samples under five conditions (control, cold, drought, 
heat, and salt) were analyzed. The data were first pre-
processed in order to fulfill the normality assumption 
of ANOVA (Additional file  2: Figure S1), which were 
run separately on the root and shoot samples. The most 
significant 2281 genes under different conditions were 
collected for further analysis. We had observed the tis-
sue-specific responses of the genes under different condi-
tions; only 554 genes were included in the top 10% lists 
for both the root and shoot samples. Furthermore, there 
were 813 genes that were differentially expressed only in 
the shoot samples and 914 genes that were differentially 
expressed only in the root samples.

From the 2281 DE genes, the WGCNA resulted in 
19 gene modules  (Additional file  3: Table S4). The sizes 
of the gene modules ranged from 60 to 295 genes, with 
an average of 120.05 genes (Additional file  4: Table S2). 
The Eigen gene (ME) for each gene module was desig-
nated as the first principle component after conducting 
the singular value decomposition (SVD) on the expres-
sion matrix of the gene module. Figure 2 shows the pat-
terns of average expressions for 19 Eigen genes of all 
conditions in shoot/root samples. Fourteen out of the 19 
Eigen genes (ME1-ME4, ME6, ME8-ME12, ME14, ME16-
ME17, and ME19) were mostly highly expressed in root 
samples. Three Eigen genes (ME5, ME7, and ME15) were 
expressed more in shoot samples, but the other two Eigen 
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genes (ME13 and ME18) had similar patterns of expres-
sion in both root and shoot samples.

By showing both the diversities of the Eigen genes 
and the experiments in one biplot, we aimed to link the 
expression patterns and the abiotic stresses to find the 
so-called tissue-specific or abiotic stress-specific mod-
ules. To simplify the biplot, we used arrows to present 
the Eigen gene vectors and text to indicate the ends of 
the abiotic-stress vectors in different tissues starting 
from the origins (Fig.  3). The SALT and HEAT vectors 
are the longest among those of all five conditions in the 
root and shoot samples, respectively, indicating that the 
expressions of the Eigen genes have relatively large vari-
ation under the salt and heat conditions in the root and 
shoot samples, respectively. The DROUGHT vectors in 
both the root and shoot samples were very short, mean-
ing that the expressions of the Eigen genes were close to 
their average values under the drought condition, which 
can also be observed through the heatmap (Fig. 2). Also, 
the DROUGHT vectors were very close to the CTRL 
vectors (the two vectors in root/shoot samples pointed 
in the same direction and were almost parallel to each 
other). This means that the expression patterns from the 
drought-treated samples were very similar to those from 
the control samples (Fig. 2). Therefore, the drought con-
dition was ignored when searching for stress-specific 
modules.

Discussion
By examining the angles between the Eigen gene vec-
tors and the condition vectors in root or shoot samples, 
we identified the abiotic stress-responsive modules. A 
smaller angle implies a stronger interaction between the 
Eigen gene and the condition. We subjectively selected 
the Eigen genes having angles of less than 15° to any con-
dition vector for further inspection (italics in Tables 1, 2). 
Under the cold condition, five of the Eigen gene vectors 
(ME3 and ME9 in the root samples and ME7, ME8, and 
ME14 in the shoot samples) had angles of less than 15° 
to the cold vectors; six Eigen gene vectors (ME3, ME11, 
and ME13 in the root samples and ME9, ME11, ME17, 
and ME19 in the shoot samples) had angles of less than 
15° to the heat vectors. For salt vectors, six Eigen gene 
vectors (ME2, ME4, ME5, ME6, ME12, and ME18 in the 
root samples and only ME2 and ME4 in the shoot sam-
ples) had angles of less than 15° to them. Note that most 
of the salt-responsive Eigen genes were present in the 
root samples and that there were slightly more tempera-
ture- (cold- or heat-) responsive Eigen genes detected in 
the shoot samples. The expressions of the Eigen genes 
were also tissue-specific because the responsive mod-
ules in root and shoot samples were mostly different for 
a selected condition.

We further identified Eigen genes which were specifi-
cally regulated only under the cold, heat, or salt condition 

Fig. 2  A heatmap consisting of 19 gene modules, 5 stress conditions, and 2 tissue types. This heatmap was consisting of 19 gene modules (M1 to 
M19), 5 stress conditions (cold, heat, salt, drought, and control), and 2 tissue types (root and shoot tissues)
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by drawing reference lines on the biplot. A line connect-
ing the ends of any two vectors of conditions, C1 and C2, 
was made; this line was called L(C1,C2) for convenience. 

Then we made another line, called P(C1,C2), passing 
through the origin and running perpendicular to L(C1,C2). 
A “stress-specific” module for the condition C3 would be 
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Fig. 3  Biplots of 19 Eigen genes and 5 stress conditions. Those biplots were consisting of 19 Eigen genes (ME1 to ME19) and 5 stress conditions 
(cold, heat, salt, drought, and control) for a root tissues, and b shoot tissues, respectively

Table 1  Angles between each gene module and stress for root samples

The italic underline gene modules had length greater than 0.25

The italics angles were less than 15 degrees

Module Length C H S P(C,S) P(H,S) P(C,H)

ME9 0.364 −4.444 17.070 87.317 23.562 −28.981 −80.381

ME11 0.344 −17.980 3.535 −79.148 10.026 −42.517 86.084

ME3 0.312 8.814 −12.700 88.313 −19.192 33.352 84.751

ME18 0.273 −78.822 −79.664 4.051 −73.172 −54.284 −2.885

ME15 0.269 57.671 −79.185 −25.201 −85.677 33.134 18.265

ME1 0.268 −64.099 85.613 18.774 −87.896 −39.561 −11.838

ME19 0.264 84.335 −62.821 12.793 −56.329 −71.128 −19.728

ME17 0.262 −77.256 55.742 −19.871 49.250 78.206 26.807

ME6 0.257 −87.773 −70.713 4.900 −64.222 −63.235 −11.836

ME4 0.254 74.502 83.984 −8.370 77.492 49.965 1.434

ME2 0.253 76.637 81.849 −6.236 75.357 52.100 0.700

ME12 0.253 89.584 −68.070 7.543 −61.579 −65.878 −14.479

ME10 0.251 78.739 −57.225 18.388 −50.733 −76.723 −25.324

ME7 0.248 53.104 −74.618 −29.768 −81.110 28.567 22.832

ME16 0.248 73.152 −51.638 23.975 −45.146 −82.311 −30.911

ME14 0.245 −50.562 29.048 −46.565 22.556 −75.100 53.501

ME5 0.239 77.480 81.006 −5.393 74.514 52.943 1.543

ME8 0.234 57.615 −36.101 39.512 −29.609 82.153 −46.448

ME13 0.151 21.791 −0.277 75.337 −6.215 46.328 −82.272
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almost parallel to both P(C1,C2) and the vector of C3. The 
angles between the Eigen gene vectors and all three per-
pendicular lines, P(C[OLD], S[ALT]), P(H[EAT], S[ALT]), 
P(C[OLD], H[EAT]) are also shown in Tables  1 and 2. 
When searching for the stress-specific Eigen genes, their 
lengths were also taken into consideration to identify the 
Eigen genes that were more affected by the condition of 
interest; a shorter Eigen gene vector implied that the 
expression levels of that Eigen gene did not change much 
under different conditions. The stress-specific Eigen gene 
vectors with a length greater than 0.25 are marked in ital-
ics and underlining in Tables 1 and 2.

In shoot samples, two Eigen gene vectors (ME8 and 
ME14) under the cold condition (Fig. 3b) had very sharp 
angles (less than 15°) to P(HEAT, SALT). This implies 
that the expression patterns of these two Eigen genes are 
similar under the heat and salt conditions but very dif-
ferent under the cold condition in shoot samples (Fig. 2). 
Similarly, ME9 and ME17 were heat-specific Eigen genes 
only in shoot samples. Four Eigen genes (ME2, ME6, 
ME12, and ME18) were identified as salt-specific only 
in root samples. Two Eigen genes, ME4 and ME11, were 
identified as salt-specific and heat-specific, respectively, 
in both root and shoot tissues.

We validated our findings through gene ontology 
(GO) enrichment analysis using the genes in the selected 
gene modules. The lists of the enriched GO are provided 
in S3 Table. There were 39 GO terms enriched by two 

cold-specific modules, M8 and M14 (Fig.  4a), with only 
one cellular component term, “plasma membrane” (GO: 
0005886), in common. According to the enriched GO 
terms, M8 and M14 are complementary to each other and 
specify different aspects of cold-responsive mechanisms. In 
particular, the genes in M8 largely participate in the biolog-
ical processes of stress response (GO: 0006950), tempera-
ture stimulus response (GO: 0009266), and cold response 
(GO: 0009409) (Additional file  5: Table S3A). Cold may 
also stimulate chemical and endogenous responses in the 
cells that cause them to accumulate carbohydrate (GO: 
0009743) and chitin (GO: 0010200). However, the GO 
terms enriched by the genes in M14 mostly belong to 
molecular function and cellular component categories.

Of three heat-specific gene modules, M9 and M17 
were specifically identified in shoot samples, while M11 
was identified in both root and shoot samples. Similarly, 
we expected that shoot-only M9 and M17 exclusively 
enriched heat-related GO terms. The three common GO 
terms among the 55 enriched in either M9 or M17 were 
more general GO terms including “response to chemi-
cal stimulus” (GO: 0042221), “response to stimulus” 
(GO: 0050896), and “plasma membrane” (GO: 0005886) 
(Fig.  4b). Combining the results from three modules, 
there were several heat-related GO terms that drew our 
attention, including “response to heat” (GO: 0009408), 
“protein folding” (GO: 0006457), “response to high 
light intensity” (GO: 0009644), “response to oxidative 

Table 2  Angles between each gene module and stress for shoot samples

The italic underline gene modules had length greater than 0.25

The italics angles were less than 15 degrees

Module Length C H S P(C,S) P(H,S) P(C,H)

ME17 0.329 −79.780 10.677 −43.221 13.794 79.689 47.246

ME14 0.306 −1.953 71.056 55.047 67.939 2.044 −51.022

ME4 0.305 −58.792 −52.105 1.792 −55.222 58.883 −5.817

ME9 0.299 −67.399 1.704 −55.601 1.414 67.308 59.626

ME11 0.293 −69.798 0.695 −53.203 3.812 69.706 57.228

ME8 0.281 14.763 −54.340 −71.763 −51.223 −14.672 67.737

ME1 0.269 −31.729 37.374 88.729 34.256 31.638 −84.704

ME10 0.255 21.774 −47.329 −78.773 −44.212 −21.683 74.748

ME15 0.254 −22.970 −87.927 34.029 88.956 23.062 −30.004

ME2 0.244 57.258 53.639 −0.258 56.756 −57.349 4.283

ME5 0.244 41.448 69.449 −15.551 72.566 −41.540 11.526

ME19 0.220 73.898 −4.795 49.102 −7.912 −73.807 −53.127

ME16 0.218 18.926 −50.177 −75.925 −47.060 −18.834 71.900

ME18 0.210 −77.204 −33.693 20.204 −36.811 77.295 −24.229

ME12 0.196 −86.352 −24.545 29.353 −27.662 86.443 −33.378

ME3 0.160 42.199 −26.904 80.802 −23.787 −42.107 −84.827

ME6 0.127 86.898 23.999 −29.899 27.116 −86.990 33.924

ME13 0.116 52.040 −17.063 70.961 −13.946 −51.948 −74.986

ME7 0.083 5.531 −74.634 −51.469 −71.516 −5.622 47.444
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stress” (GO: 0006979), “response to radiation” (GO: GO: 
0009314), and “response to cadmium ion” (GO: 0046686) 
(Additional file 5: Table S3B). This implied that the plant 
may simultaneously suffer adversities from light, radia-
tion, and cadmium toxicity when under heat stress.

Under the salt stress, genes in the M4 module were spe-
cifically disturbed in both root and shoot samples. The 
three GO terms enriched only in M4 were “response to 
inorganic substance” (GO: 0010035), “response to metal 
ion” (GO: 0010038), and “response to cadmium ion” (GO: 
0046686) (Fig. 4c; Additional file 5: Table S3C). The mod-
ule M6 contained genes in response to osmotic stress 
(GO: 0006970), especially salt stress (GO: 0009651). This 
meant that the enriched GO terms of M6 mostly over-
lapped with those enriched in the other salt-specific 

modules. Genes in the M2 module were more involved 
in the processes of localization (GO: 0051179), cellular 
component biogenesis (GO: 0044085), macromolecule 
biosynthesis (GO: 0009059), and vitamin biosynthe-
sis (GO: 0009110). A large portion of genes in the M12 
module were expressed in response to wounding (GO: 
0009611), biotic stimulus (GO: 0009607), organic acid 
metabolism (GO: 0006082), and cellular amino acid 
metabolism (GO: 0006520). The M18 module contains 
genes related to reproduction (GO: 00000003), fruit and 
seed development (GO: 0010154 and GO: 0048316), and 
embryonic/post-embryonic development (GO: 0009790 
and GO: 0009791).

Although the stress-specific modules were composed 
of different genes, they eventually enriched the same 22 

Fig. 4  Venn diagrams of enriched gene ontology items. Those venn diagrams were produced for a cold-specific, b heat-specific, c salt-specific, and 
d all stress-specific gene modules. The numbers in the venn diagrams were the numbers of enriched GO items in the stress-specific gene modules. 
For example, in a, there were 22, 16, and 1, GO items enriched in M14 only, M8 only, and in both M8 and M14
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GO terms (Fig.  4d), including “primary metabolic pro-
cess” (GO: 0044238), “response to chemical stimulus” 
(GO: 0042221), “response to stimulus” (GO: 0050896), 
“response to temperature stimulus” (GO: 0009266), 
“response to stress” (GO: 0006950), “response to hor-
mone stimulus” (GO: 0009725), “response to endogenous 
stimulus” (GO: 0009719), and “response to abiotic stimu-
lus” (GO: 0009628) (Additional file  5: Table S3D). That 
means that different genes in the same GO may be dis-
turbed in different ways under different conditions. For 
example, the expressions for the 99 genes correspond-
ing to the enriched “response to abiotic stimulus” (GO: 
0009628) in different modules presented tissue-specific 
and/or stress-specific patterns (Fig. 5).

The inferred stress-specific gene regulatory events were 
partly supported by experimental results through lit-
erature search. For instance, we compared the AGI locus 
identifiers of the 98 genes in the cold-specific gene mod-
ule M8 to those known as cold-temperature responsive 
genes in the Gramene Pathway Browser (http://plantre-
actome.gramene.org/PathwayBrowser/#SPECIES=9079
025&DIAGRAM=9085214&PATH=9085019,9085215&
DTAB=MT) and only two genes, DREB1A (AT4G25480) 
and DEAR1 (AT3G50260), were matched. They belong to 
CBF1 homolog and RAP2 homolog, respectively, in the 
Gramene pathway modules. DREB1A was the intermedi-
ate between the well-known cold induced transcription 
factor, ICE1, and the cold responsive genes, RD29A and 
COR15A (Yamaguchi-Shinozaki and Shinozaki 2006), 
while DEAR1 would repress the expression of RD29A 
and COR15A under the cold stress (Tsutsui et al. 2009).

Conclusion
In this study, we identified abiotic stress-specific modules 
after conducting a weighted gene correlation network 
analysis (WGCNA) using the analysis of variance and 
biplot visualization. Our first step in doing so was to dif-
ferentiate the relevant gene module(s) according to dif-
ferent categorical traits (the different stress conditions, 
in our case) by the analysis of variance, something which 
might not have been accomplished by an analysis of cor-
relation. Furthermore, the geometric interpretation of a 
biplot aims to utilize mRNA levels to point out to plant 
physiologists a plausible direction for further in  vitro 
validation of tissue-specific and/or stress-specific mecha-
nisms. The readers need to be aware of the fact that the 
heatmaps and biplots presented in this study were con-
structed based on the expression levels of the “pseudo” 
Eigen genes, which represent the diverse gene expres-
sions in the gene modules specified by the WGCNA. It 
is thus possible that none of the genes in a given mod-
ule exactly matches the expression patterns of the Eigen 
gene. The results of the analyses only provide hints about 

the underlying biological processes, which need to be 
further confirmed, as for example, by the gene ontology 
analysis in this study. In conclusion, our approach has the 
potential to further elucidate stress-specific mechanisms 
in plants via meta-analysis of massive amounts of micro-
array data. It can be used to complement the conven-
tional bioinformatics analyses associated with the studied 
phenotypes.
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