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The roles of Arabidopsis HSFA2, HSFA4a, 
and HSFA7a in the heat shock response 
and cytosolic protein response
Kuan‑Fu Lin†, Meng‑Yu Tsai†, Chung‑An Lu, Shaw‑Jye Wu and Ching‑Hui Yeh*

Abstract 

Previously, we found that Arabidopsis plants transformed with a construct containing the promoter of Oshsp17.3 from 
rice fused to the β-glucuronidase gene (GUS), Oshsp17.3Pro::GUS (Oshsp17.3p), showed a GUS signal after heat shock 
(HS) or azetidine-2-carboxylic acid (AZC) treatment. HS and AZC trigger the heat shock response (HSR) and cytosolic 
protein response (CPR), respectively, in the cytosol by modulating specific heat shock factor (HSF) activity. Here we 
further identified that AtHSFA2 (At2g26150), AtHSFA7a (At3g51910), AtHSFB2a (At5g62020), and AtHSFB2b (At4g11660) 
are HS- and AZC-inducible; AtHSFA4a (At4g18880) is AZC-inducible; and AtHSFA5 (At4g13980) is less AZC- and HS-
inducible. To investigate the roles of these 6 AtHSFs in the HSR or CPR, we crossed two independent Oshsp17.3p 
transgenic Arabidopsis plants with the AtHSF-knockout mutants athsfa2 (SALK_008978), athsfa4a (GABI_181H12), 
athsfa5 (SALK_004385), athsfa7a (SALK_080138), athsfb2a (SALK_137766), and athsfb2b (SALK_047291), respectively. 
As compared with the wild type, loss-of-function mutation of AtHSFA2, AtHSFA4a, and AtHSFA7a decreased HS and 
AZC responsiveness, so these 3 AtHSFs are essential for the HSR and CPR. In addition, loss-of-function results indicated 
that AthsfB2b is involved in regulating the HSR in Arabidopsis. Furthermore, analysis of the relative GUS activity of two 
double knockout mutants, athsfA2/athsfA4a and athsfA2/athsfA7a, revealed that AtHSFA2, AtHSFA4a, and AtHSFA7a 
function differentially in the HSR and CPR. Transcription profiling in athsf mutants revealed positive or negative tran‑
scriptional regulation among the 6 AtHSFs in Arabidopsis plants under HS and AZC conditions. Tunicamycin treatment 
demonstrated that these 6 AtHSFs are not involved in the unfolded protein response.
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Background
Protein homeostasis is crucial for maintaining normal 
cellular function. Plants, being sessile organisms, cannot 
escape from their growing environments. Extremes in 
environmental factors can result in stressful conditions 
that inevitably damage proteins directly or cause cells 
to synthesize misfolded proteins, which can lead to per-
turbed cell function and stress-induced cell death. Plants 
have evolved an extensive network of chaperone sys-
tems to restore protein folding or to remove irreversibly 

unfolded proteins (Mehdy 1994; Shinozaki and Yamagu-
chi-Shinozaki 1996; Bukau et al. 2006; Cramer et al. 2011; 
Redondo-Gómez 2013).

Accumulation of unfolded proteins within cells, elicit-
ing compartment-specific chaperones and pathways, is 
termed the unfolded protein response (UPR). The UPR 
initiates the dissociation of the endoplasmic reticu-
lum (ER) chaperone, immunoglobulin binding protein, 
and ER master sensors, such as inositol-requiring 1 and 
protein kinase R-like ER kinase, to activate downstream 
effectors to restore protein homeostasis in the lumen 
of the ER. A cytosolic process, the cytoplasmic pro-
tein response (CPR), increases the synthesis of molecu-
lar chaperones such as heat shock proteins (HSPs). In 
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contrast to the better-understood UPR of the ER, the 
regulatory molecules in the CPR are not well elucidated.

The heat-shock response (HSR), predominantly a 
response to maintain protein-folding homeostasis in the 
cytosol, causes transcriptional activation of HSPs under 
thermal stress (Aparicio et al. 2005; Jungkunz et al. 2011). 
The expression of HSP genes is mainly under the control 
of heat shock transcription factors (HSFs) (Schöffl et al. 
1998; Nover et  al. 2001). The number of HSFs is char-
acteristically higher in plants than in other organisms. 
For example, Arabidopsis and rice have 21 and 25 HSFs, 
respectively, but Drosophila, C. elegans and yeast have 
only one HSF (Nover et al. 2001; Guo et al. 2008; Scharf 
et al. 2012). The multiplicity of members of the HSF fam-
ily in plants may contribute to their fitness to face varied 
environmental challenges such as extreme temperatures, 
drought, and salinity (Busch et al. 2005).

Plant HSFs are classified into three classes (A, B, and 
C) on the basis of structural characteristics and phyloge-
netic comparison. Class A HSFs contain a DNA binding 
domain, an oligomerization domain, nuclear localization 
domains, and transcriptional activation domains. Classes 
B and C lack a transcriptional activation domain (Nover 
et  al. 2001). Recent studies of tomato HSFA1a mutants 
and an Arabidopsis HSFA1a/1b/1d/1e quadruple mutant 
revealed that members of HSFA1 genes can function as 
master regulators for the HSR and play important roles in 
cross-regulation for abiotic stress responses (Mishra et al. 
2002; Liu et  al. 2011). Increasing evidence shows func-
tional diversification among different HSF members.

In addition to heat shock (HS), a proline analog, aze-
tidine-2-carboxylic acid (AZC), can induce accumulation 
of abnormal-misfolded proteins in the cytosol to trigger 
the CPR by modulating HSFA2 activity (Yeh et al. 2007; 
Sugio et  al. 2009; Nishizawa-Yokoi et  al. 2011). In the 
current study, we fused the promoter of AZC-inducible 
small HSP (sHSP), Oshsp17.3, with the β-glucuronidase 
gene (GUS) (Oshsp17.3Pro::GUS) and transformed into 
Arabidopsis AtHSF mutants, and detected GUS activ-
ity in response to AZC and HS (Guan et  al. 2010). Our 
results allowed us to characterize the roles of Arabidopsis 
HSFs in the HSR and CPR.

Methods
Plant materials
The Arabidopsis thaliana ecotype Col-0 was used in 
this study as the wild type (WT). Seeds were surface-
sterilized in commercial bleach that contained 5% (v/v) 
sodium hypochlorite and 0.1% (v/v) Triton X-100 solu-
tion for 10 min, rinsed in sterilized water, and stratified 
at 4 °C for 2 days in the dark. Seeds were germinated on 
growth agar plates [1/2 Murashige and Skoog medium 
(MS; Duchefa), 1% sucrose (w/v), 0.8% agar (w/v)]. 

The T-DNA insertion lines SALK_008978 (athsfa2), 
GABI_181H12 (athsfa4a), SALK_004385 (athsfa5), 
SALK_080138 (athsfa7a), SALK_137766 (athsfb2a), and 
SALK_047291 (athsfb2b) mutants were obtained from 
the Arabidopsis Biological Resources Center (ABRC, 
Columbus, OH, USA) (Liu et al. 2011; Kleinboelting et al. 
2012). The athsfa2/athsfa4a and the athsfa2/athsfa7a 
double mutants were generated by crossing athsfa2 with 
athsfa4a and athsfa7a mutants. Mutant seeds were ger-
minated and selected on selection agar plates [1/2 MS, 
1% sucrose (w/v), 25 μg/ml hygromycin, 0.8% agar (w/v)]. 
All seedlings were grown at 23 °C in a 16-h light/8-h dark 
cycle in a growth chamber with 60% relative humidity.

RNA isolation and RT‑PCR
Total RNA was extracted from 10-day-old Arabidop-
sis seedlings as described (Guan et  al. 2010). The first-
strand cDNA was synthesized with 1  μg total RNA by 
using the SuperScript III First-Stand Synthesis System 
(Invitrogen). PCR amplification corresponding to dif-
ferent AtHSFs shown in Fig. 3 were 30 s at 94 °C, 30 s at 
52 °C, and 30 s at 72 °C, then 5 min at 72 °C. Primers used 
for analysis of gene expression were designed by use of 
NCBI Primer-BLAST (https​://www.ncbi.nlm.nih.gov/
tools​/prime​r-blast​/) and are in Table 1. DNA from 15 μl 
of each PCR reaction was fractionated by electrophore-
sis on 1.2% (w/v) agarose gel with 0.01% (w/v) ethidium 
bromide in 1× Tris–Acetate EDTA buffer. The gel was 

Table 1  Oligonucleotides used in RT-PCR

Gene Primer name Sequence

AtHSFA2 AtHSFA2-Fw 5′-CCA​TGG​AAG​AAC​TGA​AAG​TGG​AAA​TGG​
AGG​-3′

AtHSFA2-Rv 5′-GCG​GCC​GCA​GGT​TCC​GAA​CCAAG-3′

AtHSFA4a AtHSFA4a-Fw 5′-CAT​CAA​GTG​GAA​CAG​TTA​GA-3′

AtHSFA4a-Rv 5′-ACT​CCG​GCT​TTA​TCT​TTA​TC-3′

AtHSFA5 AtHSFA5-Fw 5′-AGC​AAG​AGT​GAA​TGA​TGT​AT-3′

AtHSFA5-Rv 5′-CTA​CTT​ACG​CTT​TTT​CAG​TC-3′

AtHSFA7a AtHSFA7a-Fw 5′-ATC​AAA​GCT​ATG​GAA​CAG​AG-3′

AtHSFA7a-Rv 5′-AAC​TCT​CAT​CAC​TAA​GCA​AC-3′

AtHSFB2a AtHSFB2a-Fw 5′-TTG​AGA​CAT​TAT​AAT​CGA​AC-3′

AtHSFB2a-Rv 5′-TCT​AAA​AAT​GTA​CTT​GTG​AT-3′

AtHSFB2b AtHSFB2b Fw 5′-GAG​GAG​AAT​AAC​TCC​GGT​AA-3′

AtHSFB2b Rv 5′-ATG​CAA​TGG​GGA​TCA​GTA​AC-3′

AtTubulin AtTubulin Fw 5′-GCC​AAT​CCG​GTG​CTG​GTA​ACA-3′

AtTubulin Rv 5′-CAT​ACC​AGA​TCC​AGT​TCC​TCC​TCC​C-3′

AtbZIP60 AtbZIP60-Fw 5′-AGG​ACG​TAT​GCT​TGA​GTG​CTT​CGT​-3′

AtbZIP60-Rv 5′-TTC​TGG​ACG​TAG​GAG​GCA​ACACT-3′

GUS GUS-Fw 5′-GGC​CTG​TGG​GCA​TTC​AGT​CT-3′

GUS-Rv 5′-AGT​TCA​GTT​CGT​TGT​TCA​CACAA-3′

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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digitally photographed and the corresponding DNA sig-
nal was quantified by using ImageJ (http://rsbwe​b.nih.
gov/ij/) (Schneider et  al. 2012) and normalized to 18S 
rRNA expression.

Preparation of DNA constructs and transformation
Oshsp17.3Pro::GUS (Oshsp17.3p) and Oshsp17.3Pro-
ΔAZRE::GUS (Oshsp17.3pΔAZRE) were constructed and 
transformed Arabidopsis plants as described (Guan et al. 
2010). Transgenic plants #5 and #11 of Oshsp17.3Pro::GUS 
(Oshsp17.3p5 and Oshsp17.3p11, respectively), which 
showed GUS expression induced by HS and AZC (Guan 
et  al. 2010), were selected to cross with AtHSF mutants 
athsfA2, athsfA4a, athsfA5, athsfA7a, athsfB2a, aths-
fB2b, athsfA2/athsfA4a, and athsfA2/athsfA7a mutants, 
respectively. F2 lines Oshsp17.3p5/athsfA2, Oshsp17.3p5/
athsfA4a, Oshsp17.3p5/athsfA5, Oshsp17.3p5/aths-
fA7a, Oshsp17.3p5/athsfB2a, Oshsp17.3p5/athsfB2b, 
Oshsp17.3p5/athsfA2/athsfA4a, Oshsp17.3p5/athsfA2/
athsfA7a, Oshsp17.3p11/athsfA2, Oshsp17.3p11/aths-
fA4a, Oshsp17.3p11/athsfA5, Oshsp17.3p11/aths-
fA7a, Oshsp17.3p11/athsfB2a, Oshsp17.3p11/athsfB2b, 
Oshsp17.3p11/athsfA2/athsfA4a, and Oshsp17.3p11/
athsfA2/athsfA7a were obtained and then self-polli-
nated to produce the F3 generation, which was used for 
analysis of HS and AZC responsiveness in this study. In 
addition, transgenic plants #2 and #7 of Oshsp17.3Pro-
ΔAZRE::GUS (Oshsp17.3pΔAZRE), which showed weak 
GUS expression with HS and AZC treatment (Guan et al. 
2010), were used as the negative control.

Stress treatment of transgenic Arabidopsis mutants
For HS treatment, 10-day-old F3-generation Arabidopsis 
seedlings were incubated in shaking buffer [1% sucrose 
(w/v), 5 mM potassium phosphate buffer, pH 6.8] at 39 °C 
for 1 h, then 23  °C for 20 h of recovery. For AZC treat-
ment, 10-day-old F3-generation Arabidopsis seedlings 
were incubated in shaking buffer with or without 5 mM 
AZC at 23 °C for 4 h, rinsed in sterilized water, then incu-
bated in shaking buffer at 23 °C for 15 h of recovery. For 
tunicamycin (Tm) treatment, 10-day-old F3-generation 
Arabidopsis seedlings were incubated in shaking buffer 
with or without 5  μg/ml Tm at 23  °C for 4  h, rinsed in 
sterilized water, then incubated in shaking buffer at 23 °C 
for 15  h of recovery. All samples were frozen by liquid 
nitrogen and stored at − 80 °C.

GUS staining
GUS staining was described previously (Guan et  al. 
2010). In brief, 10-day-old seedlings were treated and 
incubated in the fixation solution (0.3% formaldehyde, 
0.1% Triton X-100, 0.1% β-mercaptoethanol, 100  mM 
sodium phosphate buffer, pH 7.0) for 60  min. Then the 

fixation solution was replaced with washing solution 
(100 mM sodium phosphate buffer, 1 mM EDTA, pH 7.0) 
twice for 15  min. Washed seedlings were vacuum-infil-
trated for 5 min in GUS staining buffer (1 mM X-Gluc, 
0.5  mM ferricyanide, 0.5  mM ferrocyanide, 0.1% Triton 
X-100, 10 mM EDTA, 100 mM sodium phosphate buffer, 
pH 7.0), then incubated at 37  °C for 24  h. The staining 
reaction was stopped by adding distilled water, the color 
of chlorophyll was removed with 70% ethanol (v/v) sev-
eral times, and seedlings were soaked in 95% ethanol 
(v/v) for 1 h. Plants were photographed to record deposi-
tion of the GUS.

Analysis of GUS activity
Seedlings after HS or AZC treatment were powdered in 
liquid nitrogen and extracted with GUS extraction buffer 
(50  mM sodium phosphate buffer, 10  mM EDTA, 0.1% 
SDS, 0.1% triton X-100, 0.1% β-mercaptoethanol, 1 mM 
PMSF, pH 7.0). After centrifugation, 10-μl protein extract 
was mixed with 990-μl GUS assay solution [2.5  mM 
MUG, 50 mM NaPO4, 10 mM EDTA, 10 mM DTT, 2% 
Leupeptin (w/v), 20% methanol (v/v), pH 7.0], which was 
preheated in 37 °C for 5 min, and extract was incubated 
in 37 °C for 1 h. For GUS activity assay, the fluorescence 
was measured in a Fluoroskan Ascent FL fluorometer 
(Labsystems, Helsinki, Finland).

Statistical analysis
Data are shown as mean ± SE from three independent 
experiments. Statistical differences were analyzed by Stu-
dent t test or Duncan multiple range test. P < 0.05 was 
considered statistically significant.

Results
Transcript levels of AtHSFs under heat and AZC stress
HSFA2, HSFA7a, HSFB1, HSFB2a, and HSFB2b were 
previously found as AZC- and HS-inducible HSFs in 
Arabidopsis seedlings (Sugio et al. 2009). To further con-
firm the responsiveness of Arabidopsis HSFs to AZC and 
HS under our test conditions, we analyzed transcript 
levels of Arabidopsis HSFs under AZC and heat treat-
ments (data not shown). We selected highly AZC- and 
HS-inducible AtHSFA2 (At2g26150; 41.8–21.8-fold 
and 31.3–5-fold induction, respectively), AtHSFA7a 
(At3g51910; 4.1–2.9-fold and 8.8–2.2-fold, respectively), 
AtHSFB2a (At5g62020; 26.8–18.6-fold and 8.7–6.7-fold, 
respectively), and AtHSFB2b (At4g11660; 4.5–2.9-fold 
and 8.3–3.5-fold, respectively) as candidate HSFs for fur-
ther study (Fig.  1). In addition, AtHSFA4a (At4g18880), 
which showed AZC responsiveness (3.9–3.2-fold), and 
AtHSFA5 (At4g13980), which showed less AZC and HS 
responsiveness, were included in the test.

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
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AtHSFA2, AtHSFA4a, and AtHSFA7a genes function 
differentially in response to heat and AZC stress
To investigate whether the AtHSFs examined are involved 
in the HS or AZC responsiveness, Two independent 
Oshsp17.3Pro::GUS transgenic plants, Oshsp17.3p5 and 
Oshsp17.3p11, were separately crossed with athsfA2, 
athsfA4a, athsfA5, athsfA7a, athsfB2a, and athsfB2b 
mutants. Lines Oshsp17.3p5/athsfA2, Oshsp17.3p5/
athsfA4a, Oshsp17.3p5/athsfA5, Oshsp17.3p5/aths-
fA7a, Oshsp17.3p5/athsfB2a, Oshsp17.3p5/athsfB2b, 
Oshsp17.3p5/athsfA2/athsfA4a, Oshsp17.3p5/athsfA2/
athsfA7a, Oshsp17.3p11/athsfA2, Oshsp17.3p11/aths-
fA4a, Oshsp17.3p11/athsfA5, Oshsp17.3p11/aths-
fA7a, Oshsp17.3p11/athsfB2a, Oshsp17.3p11/athsfB2b, 
Oshsp17.3p11/athsfA2/athsfA4a, and Oshsp17.3p11/
athsfA2/athsfA7a were obtained for analyzing HS and 
AZC responsiveness.

Under the HS condition (39  °C for 1  h), Oshsp17.3p5 
plants showed GUS staining; Oshsp17.3p5/athsfA2, 
Oshsp17.3p5/athsfA4a, Oshsp17.3p5/athsfA7a, and 
Oshsp17.3p5/athsfB2b plants showed reduced GUS 
expression; and GUS staining was similar in Oshsp17.3p5/
athsfA5 and Oshsp17.3p5/athsfB2a plants (Fig. 2a). Under 
AZC treatment (5 mM AZC for 4 h), both cotyledons and 
true leaves of Oshsp17.3p5/athsfA2 and Oshsp17.3p5/
athsfA7a plants did not show any GUS signal (Fig.  2a), 
and true leaves of Oshsp17.3p5/athsfA4a, Oshsp17.3p5/
athsfB2a, and Oshsp17.3p5/athsfB2b plants showed little 
or no GUS signal; the profile of GUS staining was similar 
in Oshsp17.3p5 and Oshsp17.3p5/athsfA5 plants. Similar 
HS- and AZC-induced profile of GUS staining was found 
in Oshsp17.3p11, Oshsp17.3p11/athsfA2, Oshsp17.3p11/

athsfA4a, Oshsp17.3p11/athsfA5, Oshsp17.3p11/aths-
fA7a, Oshsp17.3p11/athsfB2a, Oshsp17.3p11/athsfB2b, 
Oshsp17.3p11/athsfA2/athsfA4a, and Oshsp17.3p11/
athsfA2/athsfA7a (data not shown).

The reduction in HS and AZC responsiveness measured 
by GUS activity was further confirmed quantitatively. 
With HS treatment, GUS activity was about 55% lower for 
Oshsp17.3p5/athsfA2 than Oshsp17.3p5 plants (Fig.  2b). 
Also, GUS activity was lower for Oshsp17.3p5/aths-
fA4a, Oshsp17.3p5/athsfA7a, and Oshsp17.3p5/athsfB2b 
than Oshsp17.3p5 plants (36, 24–34, and 36% reduction, 
respectively). Similar reduction of GUS activity was fur-
ther confirmed in Oshsp17.3p11/athsfA2, Oshsp17.3p11/
athsfA4a, Oshsp17.3p11/athsfA7a, and Oshsp17.3p11/
athsfB2b compared with Oshsp17.3p11 plants (Fig.  2c). 
We did not find a significant difference in GUS activ-
ity among Oshsp17.3p5, Oshsp17.3p11, Oshsp17.3p5/
athsfA5, Oshsp17.3p11/athsfA5, Oshsp17.3p5/athsfB2a 
and Oshsp17.3p11/athsfB2a plants. These loss-of-func-
tion results indicate that mutation of AthsfA2, AthsfA4a, 
AthsfA7a, and AthsfB2b may alter HS responsiveness in 
Arabidopsis plants.

We then compared the effect of AtHSF mutation 
on AZC responsiveness. With AZC treatment, rela-
tive GUS activity was lower for Oshsp17.3p5/athsfA2, 
Oshsp17.3p5/athsfA4a, and Oshsp17.3p5/athsfA7a than 
Oshsp17.3p5 plants (65–67, 46–48, and 40–42% reduc-
tion, respectively) (Fig. 2d) but did not significantly differ 
among Oshsp17.3p5, Oshsp17.3p5/athsfA5, Oshsp17.3p5/
athsfB2a, and Oshsp17.3p5/athsfB2b plants. Similar 
reduction of GUS activity was further confirmed in 
Oshsp17.3p11/athsfA2, Oshsp17.3p11/athsfA4a, and 
Oshsp17.3p11/athsfA7a compared with Oshsp17.3p11 
plants (Fig. 2e). Thus, on GUS activity analysis of HS- and 
AZC-treated seedlings, AtHSFA2, AtHSFA4a, and AtHS-
FA7a were important for the HSR and AZC response in 
Arabidopsis.

Furthermore, we crossed athsfA2/athsfA4a and 
athsfA2/athsfA7a plants with OsHsp17.3p5 and 
OsHsp17.3p11 transgenic Arabidopsis, respectively and 
obtained Oshsp17.3p5/athsfA2/athsfA4a, Oshsp17.3p11/
athsfA2/athsfA4a, Oshsp17.3p5/athsfA2/athsfA7a, and 
Oshsp17.3p11/athsfA2/athsfA7a Arabidopsis plants for 
testing HS and AZC responsiveness. With HS treatment, 
GUS signal was absent in true leaves of Oshsp17.3p5/
athsfA2/athsfA4a and cotyledons of Oshsp17.3p5/
athsfA2/athsfA7a, and AZC-induced GUS signal was 
not significant in Oshsp17.3p5/athsfA2/athsfA4a or 
Oshsp17.3p5/athsfA2/athsfA7a Arabidopsis plants, 
which was similar to Oshsp17.3p5/athsfA2 and 
Oshsp17.3pΔAZRE plants (Fig.  2a). Similar HS- and 
AZC-induced profile of GUS staining was found in 
Oshsp17.3p11/athsfA2/athsfA4a and Oshsp17.3p11/
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athsfA2/athsfA7a Arabidopsis plants (data not shown). 
On quantitative analysis, with HS treatment, relative 
GUS activity was significantly lower for Oshsp17.3p5/
athsfA2/athsfA4a and Oshsp17.3p5/athsfA2/athsfA7a 
than Oshsp17.3p5/athsfA2, Oshsp17.3p5/athsfA4a, and 
Oshsp17.3p5/athsfA7a plants (Fig. 2b). Also, GUS activ-
ity was lower for Oshsp17.3p11/athsfA2/athsfA4a and 
Oshsp17.3p11/athsfA2/athsfA7a than Oshsp17.3p11/
athsfA2, Oshsp17.3p11/athsfA4a, and Oshsp17.3p11/
athsfA7a plants (Fig.  2c). With AZC treatment, the 
GUS activity for Oshsp17.3p5/athsfA2/athsfA4a and 
Oshsp17.3p5/athsfA2/athsfA7a plants dropped to a 
level (38 and 40% of GUS activity, respectively, versus 
Oshsp17.3p5 plants) comparable to that for Oshsp17.3p5/
athsfA2 and Oshsp17.3pΔAZRE plants (Fig. 2d). In addi-
tion, GUS activity did not significantly differ among 
Oshsp17.3p11/athsfA2/athsfA4a, Oshsp17.3p11/
athsfA2/athsfA7a, and Oshsp17.3p11/athsfA2 plants 
(Fig. 2e). These results suggest that AtHSFA2, AtHSFA4a, 
and AtHSFA7a genes function independently in the HSR 
of Arabidopsis plants.

Positive and negative regulation among the AtHSFs
Data in Fig.  1 revealed that AtHSFA2, AtHSFA7a, AtHS-
FB2a, and AtHSFB2b were HS- and AZC-inducible and 
AtHSF4a was AZC-inducible. We examined the expres-
sion profiles of the 6 AtHSFs in the mutants under stress. 
After 1 h of heat treatment, compared with the WT and 
Oshsp17.3p5 plants, AtHSFA4a transcript level was signifi-
cantly elevated in Oshsp17.3p5/athsfA5 and Oshsp17.3p5/
athsfB2a plants and AtHSFA7a level was increased in 
Oshsp17.3p5/athsfA2, Oshsp17.3p5/athsfA5, Oshsp17.3p5/
athsfB2a, and Oshsp17.3p5/athsfA2/athsfA4a plants, with 
no significant change in AtHSFA2, AtHSFA5, AtHSFB2a, 

and AtHSFB2b levels in the mutant plants tested (Fig. 3a). 
With AZC treatment, AtHSFA2 and AthsfA4a levels were 
reduced in Oshsp17.3p5/athsfB2a and Oshsp17.3p5/
athsfA2 plants, respectively, and AtHSFA7a level was 
increased in Oshsp17.3p5/athsfA4a and Oshsp17.3p/aths-
fB2b plants (Fig.  3b). Similar expression profiles of the 6 
AtHSFs were also found in Oshsp17.3p11, Oshsp17.3p11/
athsfA2, Oshsp17.3p11/athsfA4a, Oshsp17.3p11/athsfA5, 
Oshsp17.3p11/athsfA7a, Oshsp17.3p11/athsfB2a, 
Oshsp17.3p11/athsfB2b, Oshsp17.3p11/athsfA2/athsfA4a, 
and Oshsp17.3p11/athsfA2/athsfA7a plants under HS and 
AZC conditions (data not shown). These results suggest a 
finely tuned activation and repression of the expression of 
HSFs under HS and AZC stress.

AtHSFA2, AtHSFA4a, and AtHSFA7a are not responsive to Tm
AZC typically induces the UPR and CPR. The data in 
Fig.  2 indicated that AtHSFA2, AtHSFA4a, and AtHS-
FA7a are essential for the HSR and AZC response in 
Arabidopsis. Studies have shown AtHSFA2 as a crucial 
regulatory component of the CPR (Sugio et  al. 2009). 
To understand whether these AtHSFs are involved in 
the UPR, we examined the effect of Tm treatment (UPR 
induction) in the AtHSF mutants tested. Tm did not acti-
vate the expression of the 6 AtHSF genes (Fig.  4a). On 
GUS analysis, no Tm responsiveness was detected in the 
mutant plants tested (Fig. 4b, c). These results confirmed 
that AtHSFA2, AtHSFA4a, and AtHSFA7a function in the 
CPR.

Discussion
To adapt to biotic and abiotic stresses, plants have 
evolved a complex set of molecular responses, which 
often exhibit features sharing substantial overlap 
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pathways and components. HSF/HSP responses are 
recognized as central chaperone components against 
unfolded protein accumulation, a signal for triggering 
HSR, UPR, or CPR based on distinct subcellular localiza-
tion (Aparicio et al. 2005; Swindell et al. 2007; Yeh et al. 

2007). Many reports have shown that HSFs are important 
for resistance to heat and other environmental stresses 
(Mishra et al. 2002; Charng et al. 2007; Banti et al. 2010; 
Liu et  al. 2011). Using an HS- and AZC-sensitive pro-
moter-GUS fusion system (Guan et  al. 2010) together 
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with knockout plants, we aimed to identify the contri-
bution of AtHSFA2, AtHSFA4a, AtHSFA5, AtHSFA7a, 
AtHSFB2a, and AtHSFB2b to the responses induced by 
HS, AZC, and Tm.

Plant HSFs are regulated by HS and AZC, including 
up- and downregulation. We found the expression of 
AtHSFA2, AtHSFA4a, AtHSFA7a, AtHSFB2a, and AtHS-
FB2b induced > twofold with 1-h HS treatment and then 
reduced after prolonged heat incubation (Fig. 1). As well, 
AZC upregulated AtHSFA2, AtHSFA4a, AtHSFA7a, 
AtHSFB2a, and AtHSFB2b expression > 2.9-fold during 
treatment. However, Tm did not affect the expression of 
the 6 AtHSFs (Fig. 4a). Despite a slight difference in plant 
material and treatment time, the results are similar to 
published microarray data (Busch et  al. 2005; Schramm 
et  al. 2008; Sugio et  al. 2009), finding that AtHSFA2, 
AtHSFA4a, AtHSFA7a, AtHSFB2a, and AtHSFB2b are 
important for stress response networks.

Studies have shown that AtHSFA2 and AtHSFA7a 
knockout mutants lose acquired thermotolerance, 
and AtHSFA2 mutants also show reduced tolerance 
to AZC (Charng et  al. 2007; Siddique et  al. 2008; Sugio 
et  al. 2009). In this study, loss-of-function mutation of 
AtHSFA2 significantly repressed relative GUS activity 
under HS and AZC treatment (Fig.  2b–e). By contrast, 
null mutation of AtHSFA4a and AtHSFA7a only slightly 
repressed relative GUS activity under HS and AZC stress. 
These results agree with others showing that AtHSFA2 is 
closely related to the regulation of HSR as well as CPR 
(Busch et  al. 2005; Nishizawa et  al. 2006; Ogawa et  al. 
2007; Sugio et al. 2009; Jung et al. 2010), whereas AtHS-
FA4a and AtHSFA7a have a lesser effect on HSR and 
CPR. Furthermore, as compared with AtHSFA2 knock-
out alone, double knockout with AtHSFA2 and AtHS-
FA4a or AtHSFA7a showed more significant repression 
of HS-induced GUS activity (Fig. 2b–e). Thus, AtHSFA2, 
AtHSFA4a, and AtHSFA7a may be linked to activation 
of different target genes/pathways in the HSR. However, 
AtHSFA2 appears to be a functionally redundant fac-
tor to AtHSFA4a and AtHSFA7a for AZC-induced CPR 
because the GUS activity of AtHSFA2-knockout plants 
was similar to that with double knockout of AtHSFA2 
and AtHSFA4a or AtHSFA7a under AZC treatment 
(Fig. 2b–e).

Ikeda et  al. (2011) reported that AtHsfB1 and AtHs-
fB2b, sharing functional redundancy in repressive activi-
ties, were able to suppress the accumulation of AtHSFA2 
and AtHSFA7a transcripts and were indispensable for 
acquired thermotolerance. As compared with AtHSFA2 
knockout, AtHsfB2b knockout slightly repressed GUS 
activity in response to HS treatment (Fig. 2b, c). We also 
revealed no significant change in HS-induced AtHSFA2 
and AtHSFA7a transcript levels with AtHsfB2b knockout 

(Fig.  3a). These results suggest that AtHSFB2b may 
mediate the HSR but not CPR. Of note, AtHSFB2a is 
highly AZC- and HS-inducible, but we did not find a 
significant reduction in GUS activity with AtHsfB2a 
knockout during AZC treatment. However, we cannot 
absolutely exclude the role of AtHsfB2a in AZC-induced 
CPR because of its high expression under AZC and HS 
treatment.

In conclusion, we confirmed and characterized the 
roles of AtHSFA2, AtHSFA4a, AtHSFA5, AtHSFA7a, 
AtHSFB2a, and AtHSFB2b in the HSR and CPR. For 
simplifying our result, we propose a working model to 
show the roles of following AtHSFs in CPR and HSR 
(Fig.  5). AtHSFA2, AtHSFA4a, and AtHSFA7a function 
independently in the HSR, but AtHSFA2 may function 
redundantly with AtHSFA4a and AtHSFA7a in the CPR. 
AtHSFB2b has some role in mediating the HSR, and 
AtHSFA5 and AtHSFB2a cannot mediate the HSR and 
CPR. These 6 AtHSFs are not involved in the UPR.
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