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Abstract 

Background:  In the past two decades, biologists have been able to identify the gene signatures associated with 
various phenotypes through the monitoring of gene expressions with high-throughput biotechnologies. These gene 
signatures have in turn been successfully applied to drug development, disease prevention, crop improvement, etc. 
However, ignoring the interactions among genes has weakened the predictive power of gene signatures in practi‑
cal applications. Gene regulatory networks, in which genes are represented by nodes and the associations between 
genes are represented by edges, are typically constructed to analyze and visualize such gene interactions. More spe‑
cifically, the present study sought to measure gene–gene associations by using the coefficient of intrinsic depend‑
ence (CID) to capture more nonlinear as well as cause-effect gene relationships.

Results:  A stepwise procedure using the CID along with the partial coefficient of intrinsic dependence (pCID) was 
demonstrated for the rebuilding of simulated networks and the well-known CBF-COR pathway under cold stress 
using Arabidopsis microarray data. The procedure was also applied to the construction of bHLH gene regulatory 
pathways under abiotic stresses using rice microarray data, in which OsbHLH104, a putative phytochrome-interacting 
factor (OsPIF14), and OsbHLH060, a positive regulator of iron homeostasis (OsPRI1) were inferred as the most affiliated 
genes. The inferred regulatory pathways were verified through literature reviews.

Conclusions:  The proposed method can efficiently decipher gene regulatory pathways and may assist in achieving 
higher predictive power in practical applications. The lack of any mention in the literature of some of the regulatory 
event may have been due to the high complexity of the regulatory systems in the plant transcription, a possibility 
which could potentially be confirmed in the near future given ongoing rapid developments in bio-technology.
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Background
Genes encode the information necessary for life, includ-
ing the information determining an organism’s molecu-
lar biology and ability to translate proteins directly 
involved in different biological activities. Therefore, the 
quantity of mRNA transcripts, or the expression levels 
of mRNA, mainly represent the gene activities in a bio-
logical system at the molecular level (Le Novère 2015). 
Using high-throughput gene profiling technologies that 
have undergone rapid development over the past several 

decades, including microarray sequencing and next-
generation sequencing, researchers are able to identify 
“gene signatures” defining genes whose expression levels 
are associated with particular traits or phenotypes under 
investigation (Ritchie et al. 2015). These gene signatures 
serve as biomarkers in a wide range of areas including 
drug development, disease diagnosis and prevention, 
and crop breeding, among others (Pérez-de-Castro et al. 
2012; Gomez-Casati et  al. 2013; Rykunov et  al. 2016). 
Once such gene signatures have been recognized, ques-
tions such as “Do the gene signatures have synergis-
tic interactions leading to the phenotypes?” and similar 
questions that presume gene–gene interactions that are 
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well acknowledged in biosystems are commonly asked 
(Knight and Knight 2001; Segal et al. 2005). These ques-
tions can potentially be answered by simultaneously 
monitoring the expression levels of the regulators or reg-
ulatees using modern high-throughput gene expression 
technologies (Mantione et al. 2014; Liseron-Monfils and 
Ware 2015).

The Pearson correlation coefficient (PCC) is one of the 
mostly adopted methods for measuring the interactions 
among genes based on their expression levels (Song et al. 
2012). Other measurements of association including the 
mutual information (MI) (Song et  al. 2012), the partial 
Pearson correlation coefficient (pPCC) (de la Fuente et al. 
2004), the coefficient of determination (CoD) (Higa et al. 
2009), and the coefficient of intrinsic dependence (CID) 
(Liu et al. 2009) have also been used. The PCC and pPCC 
have the limitation of only identifying the linear rela-
tionship between any two gene expressions. In contrast, 
the CID requires neither distributional (e.g. normal) 
nor functional (e.g. linear) assumptions regarding gene 
expression data. CID(Y|X) designates the CID value of 
a variable Y given the information of another variable X. 
It takes any real value between 0 and + 1 inclusive. It is 
+ 1 in the case of full dependence and is 0 in the case of 
independence. As the level of dependence increases, the 
CID value goes from 0 to 1. In past studies, the CID has 
been used in conjunction with the correlation coefficient 
to construct an estrogen receptor regulatory network 
(Liu et al. 2009), to infer and classify co-regulatory events 
using two transcription factors (Liu et  al. 2012), and to 
perform gene set association analysis (GSAA) (Tsai and 
Liu 2013). We have further demonstrated that the CID 
outperforms conventional methods for the identification 
of different association patterns (Liu et al. 2009; Tsai and 
Liu 2013).

After potential regulator–regulatee interactions under 
particular conditions have been identified, those interac-
tions can then be connected to one another if they share 
the same genes. Such interactions are considered to con-
stitute the small units of entire gene regulatory networks 
(GRNs), which may be combined together to form more 
comprehensive networks that better represent the bio-
systems in question (Liseron-Monfils and Ware 2015). 
An inferred GRN can therefore provide insights into the 
relationships between the genes of interest for specific 
experiments and clarify the understanding of biological 
functions involving complex biological phenomena (Kar-
lebach and Shamir 2008). More specifically, an inferred 
GRN consisting of nodes (which represent the genes) 
and edges (which represent significant gene–gene inter-
actions) reflects the gene regulation events that may 
concurrently or sequentially occur under the conditions 
being investigated. Previous studies have revealed that 

the edges between nodes in a GRN are typically not ran-
domly allocated but are presumably assigned according 
to the scale-free topological model (e.g., Liseron-Monfils 
and Ware 2015). This would result in a network in which 
most nodes, with the exception of a few highly connected 
ones, are connected by a sparse number of edges. In this 
study, we focused on the inference and reconstruction of 
GRNs using the results of microarray experiments. More 
ambitiously, we sought to model the causal relationships 
in a single GRN.

Within a GRN, the relationship between a transcrip-
tion factor (TF) and its target genes is usually expected 
to consist of a causal relationship (Pilpel et  al. 2001). A 
directed edge pointing from the TF to the target gene 
would be specified in order to emphasize the origin 
(source) and the consequence (target) in this kind of rela-
tionship. Compared to a co-expression GRN (i.e., a net-
work with undirected edges), a cause-and-effect GRN 
requires in vitro or in silico evidence to assign the direc-
tion to an edge (Simcha et  al. 2013). However, in  vitro 
evidence may not be available at all times, while the sym-
metric property of some commonly used statistics limits 
the exploration of causal effects in a GRN (Hsing et  al. 
2005). In this study, we utilized the asymmetric prop-
erty of the CID (i.e., CID(Y|X) is not necessarily equal 
to CID(X|Y)) to distinguish not only the associated gene 
pairs but the causes/effects in a gene regulation event. 
Asymmetry is a very unique feature of the CID, whereas 
some conventional methods, including the PCC, pPCC, 
and mutual information, provide symmetric results when 
considering the association between two variables. Other 
methods like the coefficient of determination may have 
limitations in terms of their capacity to be utilized on 
particular types of data (Liu 2005).

Another emphasis of this study was its utilization of 
a new measure derived from the CID to perform the 
stepwise selection of relevant genes for regulation path 
elongation. This new measure is called the partial coef-
ficient of intrinsic dependence (pCID), a name which 
was inspired by the partial correlation coefficient (Hsiao 
and Liu 2016). The new measure was motivated by a 
difficulty encountered while using the multi-predictor 
CID described in a study by Liu et al. (2012) to identify 
relevant genes in the elongation step. Ideally, a proper 
stepwise procedure iteratively picks the relevant genes 
according to its magnitude of association to the target 
until no additional gene would significantly increase 
the amount of association. For example, CID(Source 
A|Target A1) would be significant while we also expect 
a significant CID(Source A|Target A1, Target A2) but an 
insignificant CID(Source A|Target A1, X) given an irrel-
evant gene X. However, due to the dominant effect of 
the most influential gene, i.e., Target A1, in the first step, 
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CID(Source A|Target A1, X) would be mostly significant 
(Hsiao and Liu 2016). The pCID resolves this problem by 
decomposing only the information of the target variable 
which was not explained by the first predictor.

The present study further proposes a procedure to 
thoroughly reconstruct a GRN based on microarray gene 
expression data and using the CID along with the pCID. 
The procedure is first demonstrated on a simulated net-
work. It is also applied to Arabidopsis microarray data to 
retrieve the CBF-COR pathway in Arabidopsis under cold 
stress in a “supervised” manner as well as to construct the 
rice bHLH gene regulatory network under abiotic stress 
in the seedling stage in an “unsupervised” manner. In 
the analysis of the CBF-COR pathway, it is known that 
cold-regulated genes (COR) are regulated by a family of 
transcription factors known as C-repeat binding factors 
(CBFs), including the transcription factors CBF1, CBF2, 
and CBF3 (Fowler and Thomashow 2002; McKhann 
et  al. 2008; Doherty et  al. 2009). Experiments based on 
transgenic plants constitutively expressing CBF1, CBF2, 
and CBF3 have suggested that the overexpression of the 
three genes induces the expression of similar gene sets, 
including COR47, COR6.6, and COR78 (Gilmour et  al. 
2004). Relatedly, RNA blot analyses have been conducted 
to confirm that the overexpression of CBF1 and CBF3 
would induce COR15A, COR78, COR47, and COR6.6 
gene expressions (Kasuga et al. 1999; Taji et al. 2002; Seki 
et  al. 2002; Fowler and Thomashow 2002). McKhann 
et  al. (2008) reported that the expression of COR15B 
may last for 5 weeks after cold treatment, while COR47 is 
only expressed within 24 h after cold treatment. By con-
structing the CBF-COR pathway in the present study, we 
examined the sensitivity of the proposed procedure and 
gained more biological insights about the possible syner-
gistic behaviors among three CBFs.

In the construction of the rice bHLH gene regulatory 
network, a larger family of bHLH (basic helix–loop–
helix) transcription factors is of interest. The bHLH gene 
family in plants plays a principal role in developmental 
processes (Schaller 2012) that might govern the biotic 
and abiotic stress responses in plants (Fujita et al. 2006). 
However, the function of most rice bHLH genes remains 
unknown (Li et  al. 2006). OsbHLH001 (OsICE2) and 
OsbHLH002 (OsICE1) are induced at the protein level 
in response to cold and salt stresses, but they are not 
affected by cold stress at the mRNA level (Nakamura et al. 
2011). Previous studies have shown that OsbHLH006 
(RERJ1) is up-regulated in response to wounding and 
drought stresses (Kiribuchi et al. 2005); the expression of 
OsbHLH009 (OsMYC), a homolog of AtMYC2 in Arabi-
dopsis, can be induced by drought stress (Baldoni et  al. 
2015); OsbHLH062 (OsbHLH1) could enhance cold tol-
erance (Li et  al. 2006); OsbHLH148 is induced by salt 

stress and results in activation under cold stress (Seo 
et  al. 2011); and OsbHLH152 (OsPILI1) could reduce 
internode elongation under drought stress (Todaka et al. 
2012). In this study, we explored the responses of the 
OsbHLH genes and their potential target genes under 
abiotic stresses. We expect that the proposed procedure 
for reconstruct GRNs may be of assistance in reverse 
engineering biological pathways and better elucidating 
the understanding of bHLH gene regulatory processes.

Methods
Coefficient of intrinsic dependence (CID) and partial 
coefficient of intrinsic dependence (pCID)
The coefficient of intrinsic dependence, CID(Y|X), quan-
tifies the statistical dependence between two genes (X, 
Y) observed from a sample of size N by assessing the 
discrepancies between the conditional distribution of Y, 
F(y|x), given the values of X and the marginal distribu-
tion of Y, F(y). The CID(Y|X) value can be estimated from 
the sample using the following equation:

where xi and yi are the observed value of X and Y in the 
ith object, respectively, and the distribution functions 
were estimated by nonparametric kernel smoothing 
method using the “np” package in R (version 0.40-13) 
(Hayfield and Racine 2008).

Inspired by the partial correlation coefficient, the par-
tial coefficient of intrinsic dependence (pCID) further 
decomposes the variability of the distribution of the vari-
able Y which was not explained by the conditional dis-
tribution of the variable Y given the first variable X1 but 
can be explained after adding a second variable X2 (Hsiao 
and Liu 2016). When the two distribution functions are 
not identical, the discrepancy between them implies the 
amount of partial dependence between X2 and Y given 
X1. Consequently, a recursive formula using CID val-
ues can be derived to compute the partial coefficient of 
intrinsic dependence of Y given X2 conditioned on X1:

The significance of the CID or pCID can then be 
assessed by the null distribution of the CID or pCID val-
ues by random permutations. That is, we randomly per-
muted the values of Y and re-computed the CID or pCID 
values. This was repeated 1000 times and yielded 1000 
internal control values of the CID values under inde-
pendence. The p value for each association relationship 
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between two variables of interest was determined by the 
number of values greater than or equal to the estimated 
CID or pCID divided by 1001. Readers are referred to 
Hsiao and Liu (2016) for more mathematical details 
and toy examples for CID/pCID definitions as well as 
estimations.

Strategy to construct the gene regulatory network
The inference of a GRN has three steps (Fig.  1): (1) the 
identification of a significantly associated gene pair, (2) 
the regulation path elongation, and (3) the assembly of 
all the identified regulation paths. The basic principle of 
our GRN construction process designates gene Y as the 
source and gene X as the target, if CID(Y|X) > CID(X|Y). 
When prior knowledge about the preferable source genes 
is lacking, any gene in the collected data can possibly 
be the source as well as the target. Due to the dramatic 
amount of genes simultaneously monitored in a micro-
array experiment, we developed the following heuristic 
approach for the first two steps. Starting from a source 
gene T0, CID(T0|Ti) is computed for one of the candidate 
target genes, Ti, where

F̂  ’s are the corresponding distribution functions esti-
mated from the sample using the nonparametric kernel 
smoothing method (Hsiao and Liu 2016), and tj (and tk) 
are the jth (and kth) realization of gene T0 (and Tj) (j or 

CID(T0|Ti )

=
1

N
×

∑N
j=1

∑N
k=1

[

F̂
(

T0 = tj|Ti = tk
)

− F̂
(

T0 = tj
)

]2
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j=1

F̂
(

T0 = tj
)

[

1− F̂
(

T0 = tj
)

]

k = 1,…, N). In order to reduce the computation required 
of the programming, we occasionally eliminated some 
irrelevant candidate target genes which caused the 
CID(T0|Ti) values to be insignificant (p-value > 0.05). 
Under these circumstances, the source gene T0 will be 
discarded as the origin of a regulation path when all 
CID(T0|Ti) values are insignificant in the first run.

In a set of G genes, we first specify the source gene T0. 
If CID(T0|T(1)) has the smallest p-value (or the largest 
CID value) among the results from all the candidate tar-
get genes, we connect the source gene T0 and the target 
T(1). The direction is set from T0 to T(1) if CID(T0|T(1)) 
is more significant than CID(T(1)|T0), or from T(1) to 
T0, otherwise. The gene pair then proceeds to the elon-
gation step. In the first step of elongation, pCID(T0|Tj; 
T(1)) and pCID(T(1)| Tj; T0) are computed for one of the 
remaining candidate genes, Tj (Fig.  2). If pCID(T0|T(2); 
T(1)) is the most significant outcome (that is, the one 
with the smallest significant p-value) among the results 
from all the candidate target genes, we connect the 
genes T0 and T(2), with the direction being from T0 to 
T(2) if the p-value of pCID(T0|T(2); T(1)) < the p-value of 
pCID(T(2)|T0;T(1)), or from T(2) to T0, otherwise. Instead, 
if pCID(T(1)|T(2); T0) is the most significant outcome (that 
is, the one with the smallest significant p-value) among 
the results from all the candidate target genes, we con-
nect the genes T(1) and T(2), with the direction being 
from T(1) to T(2) if pCID(T(1)|T(2); T0) is more significant 
than pCID(T(2)|T(1);T0), or from T(2) to T(1), otherwise. 
This completes the first run of the elongation. In the kth 
run (k ≥ 2) of the elongation, all of the possible values 
of pCID(S|Tj; {T0, T(1), …, T(k)}\{S}) for S ∈ {T0, T(1), …, 

Fig. 1  Diagram of gene regulatory network inference workflow. a Identification of a significantly associated gene pair. b Regulation path 
elongation. c Assembly of all identified regulation paths
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T(k)} for the remaining (G − k − 1) genes are computed 
and result in (k + 1)(G −  (k + 1)) pCID values. Suppose 
pCID(S|T(k + 1); {T0, T(1), …, T(k)}\{S}) is the most signifi-
cant value, and we connect the node S and T(k +  1); the 
direction is from S to T(k + 1) if pCID(S|T(k + 1); {T0, T(1), …, 
T(k)}\{S}) is more significant than pCID(T(k + 1)|S; {T0, T(1), 
…, T(k)}\{S}), or from S to T(k + 1), otherwise. The elonga-
tion process continues until all of the pCID(S|Tj; {T0, T(1), 
…, T(e)}\{S}) values are insignificant (p-value > 0.05). The 
resulting network will contain e + 1 nodes (T0, T(1), …, 
T(e)).

When the list of possible gene sources in the network 
is indicated by available biological evidence, the infer-
ence of the GRN can be simplified. In such cases, only 
pCID(S|Tj; {T0, T(1), …, T(k)}\{S}) for S  ∈  {the possible 
gene sources} and their p-values are computed in the kth 
run (k ≥ 2) of the elongation. The whole elongation pro-
cess then continues until all of the pCID(S|Tj; {T0, T(1), 
…, T(e)}\{S}) values are insignificant (p-value > 0.05) and 
result in a network with e + 1 nodes (T0, T(1), …, T(e)).

Simulation methods
The proposed procedure of GRN inference was examined 
in a simulation study. A pseudo network with six nodes 
(genes) was generated according to a normal mixture 
model (Fig. 3a). It contained one source node (A11), four 
target nodes (A21, A22, A31 and A32), and one node (B) 
independent of the others. The expression levels of nodes 
A11 and B were randomly generated from the normal 
distribution with means and standard deviations both 

equal to 1, N(1, 1). The expression levels of the target 
nodes were affected by two factors: the expression level 
and the binding efficiency of its direct source. This was 
intended to mimic the occasions in which (1) the tran-
scription factor does not express so that the target gene 
is not regulated by the source gene, and (2) even if the 
source gene does express, the target gene may still not 
be regulated by the source gene due to the various bind-
ing efficiencies of the transcription factor. Let S and T 
denote the direct source and the target gene, respectively. 
In the simulated network, A11 was the direct source of 
{A21, A22} and A21 was the direct source of {A31, A32}. 
If the binding efficiency for this pair of S and T was set 
to be 100b%, then 100(1 − b)% of the objects in the sam-
ple would not be affected by the expression level of S and 
their expression levels would be generated from N(−  1, 
1). The binding efficiency for {A11, A21}, {A11, A22}, 
{A21, A31}, and {A21, A32} were set to be 0.9, 0.7, 0.9, 
and 0.8, respectively (Table 1). For the 100b% objects for 
which the regulation did take place, if the expression level 
of S in the ith sample was si, then the expression level of 
the ith sample was randomly generated from N(si, 0.25) 
if si > 0 and from N(− 1, 0.25) if si < 0 (meaning that S was 
not expressed). The pseudo network was replicated 100 
times with sample sizes of N = 25, 50, or 100.

The approximate proportions of the gene expressions 
of the target gene actually determined by the expression 
levels of the source gene were expressed as P (S → T). 
Because the target gene can only be regulated by the 
source gene if the expression level of the source gene 

Fig. 2  Illustration of the heuristic approach for regulation path elongation
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is greater than 0, we tabulated the two probabilities, P 
(S → T) and P(S > 0) denoting the probability that the 
expression level of the source gene is greater than 0, 
for all combinations of {S, T} in Table  1. In the simu-
lated network, we deliberately set different efficien-
cies of regulation for each pair of {S, T} to examine the 
goodness of CID/pCID in detecting different levels of 
associations.

Microarray expression data
The first dataset used was the expression data of Arabi-
dopsis thaliana under cold stress to study the well-known 
CBF-COR pathway. This dataset can be downloaded 
from the Arabidopsis Information Resource (TAIR) data-
base (Garcia-Hernandez et al. 2002). This data originally 
consisted of 22,810 probes and 52 samples (submission 
number ME00325). The tissues were treated in a 4  °C 

Fig. 3  Reconstruction of the a simulated network using sample size, b n = 25, c n = 50, and d n = 100. The numbers next to the arrows in a are 
the probabilities of the expression levels of the target genes actually determined by the expression levels of the source genes. The numbers next 
to the arrows in b–d are the numbers of arrows pointing in correct directions (outside of the parentheses) and the numbers of arrows pointing in 
incorrect directions (in the parentheses)
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environment, and the expression levels were monitored 
after 0 (control), 0.5, 1, 3, 6, 12, or 24 h of treatment. The 
microarray expression raw dataset was first subjected to 
pre-processing using the RMA (Robust Multichip Aver-
age) method (Irizarry et  al. 2003) and was log2 trans-
formed. As an instance of supervised study, only probes 
related to CBF-COR regulation pathway in the microar-
ray were collected for network construction according to 
their annotations.

A second dataset was used to study the bHLH path-
way in rice (Oryza sativa). The expressions data can be 
downloaded from the NCBI-GEO database (Edgar et al. 
2002) (accession numbers GSE6901 and GSE14275). The 
GSE6901 dataset includes the gene expressions of 7-day-
old rice seedling samples under drought, salt, cold, and 
controlled conditions (three biological replicates of each 
condition). The GSE14275 dataset includes the gene 
expressions of 14-day-old rice seedling samples under 
heat and controlled conditions (three biological replicates 
of each condition). Expressed RNA samples were hybrid-
ized on Affymetrix microarrays (NCBI-GEO accession 
number GPL2025). The raw expression data of 51,279 
probes from 18 samples were first subjected to pre-pro-
cessing using the RMA method (Irizarry et al. 2003) and 
were log2 transformed. In this study, we were interested 
in the genes that were previously reported as related 
genes involved in the bHLH pathway (Li et al. 2006).

Some bHLH proteins recognize the G-box in the pro-
moter region of their target genes (Gonzalez 2015). 
Among the bHLH-related genes, some of them can rec-
ognize and bind to the G-box according to Li et al. (2006). 
In this study, we also downloaded the gene sequences of 
the bHLH-related genes in the microarray from RAP-DB 
(version 7.0) (Sakai et  al. 2013) to specify potential tar-
get genes containing G-box sequences in their promoter 
regions. The probes recognizing the bHLH-related genes 
and the probes containing G-box sequences were des-
ignated as the source and the candidate target genes, 

respectively, to construct the bHLH gene network. Note 
that there may have been some probes that served as 
both source and target genes since they not only could 
bind the G-box according to the literature but also had 
the G-box sequence in their promotor regions.

Results
Reconstruction of a pseudo network in the simulation
A pseudo network with six nodes (genes) was gener-
ated to assess the proposed procedure of GRN inference 
(Fig.  3a). Two source genes, A11 and B, were predeter-
mined. The CID and pCID values as well as their p-values 
for a particular simulation of a sample with 25 realiza-
tions are shown in Table  2 as a demonstration of net-
work reconstruction. Starting from A11, the results 
showed that CID(A11|A21) had the largest value (0.2146) 
and the smallest p-value (0.0010), such that A21 was 
selected as the first node connected to A11. Because 
CID(A11|A21) and CID(A21|A11) had the same sig-
nificant p-value (0.0010) and because the CID(A11|A21) 
value (0.2146) was larger than the CID(A21|A11) value 
(0.1905), the direction was set from A11 to A21. The 
computation of pCID(A11|x; A21) and pCID(A21|x; 
A11) for another gene x followed and resulted in the 
selection of A22 as the second node connected to 
A11 due to the fact that pCID(A11|A22; A21) had the 
smallest p-value (0.0010) and the largest pCID value 
(0.1679). The direction was set from A11 to A22 because 
pCID(A11|A22; A21) had the same significant p-value 
(0.0010) as pCID(A22|A11; A21) but pCID(A11|A22; 
A21) = 0.1679 > pCID(A22|A11; A21) = 0.1460. Simi-
larly, the third target and fourth target, A31 and A32, 
were selected based on pCID(A21|A31; A11, A22) and 
pCID(A21|A32; A11, A22, A31); both A31 and A32 
were connected from A21 due to pCID(A21|A31; A11, 
A22) = 0.1751 > pCID(A31|A21; A11, A22) = 0.1707 
(both had the same p-value) and [p-value of 
pCID(A21|A32; A11, A22, A31)] = 0.0070 < [p-value of 
pCID(A32|A11; A11, A22, A32)] = 0.8392. When consid-
ering the negative-control node B as the source node, it 
had all insignificant values of CID at the first step of GRN 
inference and was isolated from the other nodes. There-
fore, the resulting network was identical to our setting 
shown in Fig. 3a.

We collected all the networks reconstructed in the 
simulations for N = 25, 50, and 100; networks consist-
ing of the same set of nodes were grouped together and 
the groups that occurred at least 5 times are shown in 
Additional file 1: Figure S1. There were 14, 65, and 81 of 
100 reconstructed networks that successfully recovered 
the correct network structure in simulations for N = 25, 
50, and 100, respectively. Moreover, 54 and 10 of 100 
reconstructed networks only correctly revealed the 

Table 1  The binding efficiency (b) of  the  source gene 
(S) on  the  promoter region of  the  target gene (T), 
the  probability that  the  expression level of  the  source 
gene is  greater than  0, P(S > 0), and  the  probability 
that  the  expression levels of  the  target gene are actually 
determined by the expression levels of the source gene, P 
(S → T), in the simulated network with 6 nodes (Fig. 3a)

{S, T} Binding efficiency 
(b)

P (S > 0) P (S → T)

{A11, A21} 0.9 0.84 0.76

{A11, A22} 0.7 0.84 0.59

{A21, A31} 0.9 0.71 0.84

{A21, A32} 0.8 0.71 0.75
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partial network for N = 25 and 50, respectively. A22 and 
A32 were discarded most often in the partial networks 
under the sample size N = 25 due to their lower pro-
portions (59% and 0.76 × 0.75 = 57%, respectively) of 
gene expressions actually determined by the expression 

levels of A11 (Fig.  3a). Similarly, the edges A11–A22 
and A21–A32 would be occasionally discarded under 
the sample size N = 50. The GRN could be mostly accu-
rately reconstructed under the sample size N = 100.

In Fig.  3b–d, the numbers of all the connections 
between two nodes from 100 simulations under N = 25, 

Table 2  The estimated CID and pCID values in one simulation of sample size n = 25

For simplicity, only the results of two pre-determined source genes, A11 and B, are shown

Italic signifies the combination having the largest CID/pCID value and the smallest p-value

CID/pCID Estimated (p-value) CID/pCID Estimated (p-value)

CID(A11|A21) 0.2146 (0.0010) CID(A21|A11) 0.1905 (0.0010)

CID(A11|A22) 0.2039 (0.0010)

CID(A11|A31) 0.1019 (0.0060)

CID(A11|A32) 0.0425 (0.0949)

CID(A11|B) 0.0534 (0.0639)

pCID(A11|A22; A21) 0.1679 (0.0010) pCID(A22|A11; A21) 0.1460 (0.0030)

pCID(A11|A31; A21) 0.0288 (0.5075)

pCID(A11|A32; A21) 0.0315 (0.4575)

pCID(A11|B; A21) 0.0133 (0.6444)

pCID(A21|A22; A11) 0.0027 (0.8462)

pCID(A21|A31; A11) 0.1581 (0.0010)

pCID(A21|A32; A11) 0.0934 (0.0120)

pCID(A21|B; A11) 0.0363 (0.2957)

pCID(A11|A31; A21, A22) 0.0285 (0.0889)

pCID(A11|A32; A21, A22) 0.0129 (0.3247)

pCID(A11|B; A21, A22) − 0.0010 (0.6114)

pCID(A21|A31; A11, A22) 0.1751 (0.0020) pCID(A31|A21; A11, A22) 0.1707 (0.0020)

pCID(A21|A32; A11, A22) 0.1001 (0.0559)

pCID(A21|B; A11, A22) 0.0523 (0.3187)

pCID(A22|A31; A11, A21) 0.0007 (0.8961)

pCID(A22|A32; A11, A21) 0.0059 (0.7872)

pCID(A22|B; A11, A21) − 0.0036 (0.9171)

pCID(A11|A32; A21, A22, A31) − 0.0019 (0.7772)

pCID(A11|B; A21, A22, A31) − 0.0055 (0.7972)

pCID(A21|A32; A11, A22, A31) 0.1165 (0.0070) pCID(A32|A21; A11, A22, A31) 0.0768 (0.8392)

pCID(A21|B; A11, A22, A31) 0.0272 (0.7772)

pCID(A22|A32; A11, A21, A31) 0.0147 (0.7692)

pCID(A22|B; A11, A21, A31) 0.0008 (0.9411)

pCID(A31|A32; A11, A21, A22) 0.0523 (0.2567)

pCID(A31|B; A11, A21, A22) 0.0196 (0.8192)

pCID(A11|B; A21, A22, A31, A32) 0.0182 (0.3596)

pCID(A21|B; A11, A22, A31, A32) 0.0257 (0.7453)

pCID(A22|B; A11, A21, A31, A32) 0.0023 (0.9610)

pCID(A31|B; A11, A21, A22, A32) 0.0156 (0.8611)

pCID(A32|B; A11, A21, A22, A31) 0.0368 (0.7203)

CID(B|A11) 0.0273 (0.6613)

CID(B|A21) 0.0112 (0.6394)

CID(B|A22) 0.0321 (0.2078)

CID(B|A31) 0.0127 (0.5784)

CID(B|A32) 0.0204 (0.3686)
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50 and, 100 are shown. When the sample size N = 25 
and the source node was A11, there were 89% of net-
works that connected A11–A21 together, 92% of net-
works that connected A21–A31, 56% of networks that 
connected A11–A22, and 44% of networks that con-
nected A21–A32, while 16% of the networks included 
the negative control node, B (Fig.  3b). When N = 50, 
97%, 98%, 82%, and 85% of the networks contained the 
edges A11–A21, A21–A31, A11–A22, and A21–A32, 
respectively, while 21% of them had the negative con-
trol node, B (Fig.  3c). When N = 100, 99%, 100%, 97%, 
and 94% of the networks contained the edges A11–
A21, A21–A31, A11–A22, and A21–A32, respectively, 
while 26% of them had the negative control node, B 

(Fig.  3d). When the negative control node, B, was set 
to be the source gene, 16% (Fig. 3b), 21% (Fig. 3c), and 
26% (Fig. 3d) of the networks were significantly built at 
α = 0.05.

Analysis of CBF‑COR pathway under cold stress 
in Arabidopsis thaliana
Using the microarray data of 44 samples, we intended 
to reconstruct the CBF-COR gene regulatory network 
(GRN) of eight genes related to cold stress in Arabidop-
sis. Three CBF TFs took turns being the source of the 
regulation path elongation, while the other probes were 
all considered as potential targets. Figure  4b–d present 
the reconstructed paths from the source CBF genes 

Fig. 4  The reconstructed paths from the source CBF genes (blue rectangles) to the target CBF genes (blue circles) or target COR genes (orange 
circles), respectively, starting from b CBF1, c CBF2, and d CBF3. All the paths in b–d were combined to reconstruct the CBF-COR GRN in a 
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(blue rectangles) to the target CBF genes (blue circles) or 
the target COR genes (orange circles), respectively. The 
resulting paths starting from CBF2 (Fig.  4c) and CBF3 
(Fig.  4d) were identical; the paths starting from CBF1 
(Fig. 4b) were similar to them except that the directions 
of the arrows between the CBF genes were opposite. We 
combined these paths to reconstruct the CBF-COR GRN 
shown in Fig. 4a. Both CBF1 and CBF3 were connected 
with CBF2 in the GRN, while CBF3 had direct contact 
with the studied downstream COR genes. The COR6.6 
was the first receiver of the information passed down 
from the CBF genes, which further influenced COR78 
and COR15B. In contrast, COR47 and COR15A served as 
signal providers in the GRN.

Construction of rice bHLH gene regulatory network 
under abiotic stress
The 61 known bHLH genes (72 probes) capable of bind-
ing to G-box sequences according to the literature (Gon-
zalez 2015) were assigned as source genes of the network 
and the 104 bHLH probes containing G-box sequences 

in their promoter regions were recruited as the potential 
targets. There were 54 probes that could be either sources 
or targets (Additional file  2: Table  S1). All the sub-net-
works from all 72 source probes were assembled together 
to form the final version of the bHLH GRN in this study 
(Fig. 5).

We considered the source gene, OsbHLH104-1, to illus-
trate the elongation process in the bHLH GRN construc-
tion (Fig. 1b). Among those CID values of OsbHLH104-1 
given to all 104 target probes, the largest one was 
CID(OsbHLH104-1| OsbHLH104-2) = 0.3926. Next, the 
largest significant pCID value was pCID(OsbHLH104-
1|OsbHLH139-1; OsbHLH104-2) = 0.0738, provided that 
the OsbHLH104-1 was the source and OsbHLH104-2 
was the first target, implying that OsbHLH139-1 was 
the second target in this particular sub-network. The 
elongation process stopped due to the fact that Osb-
HLH139-1 can be a target variable but not a source 
variable. When considering another source gene, Osb-
HLH056-1, the elongation process was stopped after 
adding one target gene, OsbHLH025-1, since all of the 

Fig. 5  Triangle nodes indicate the bHLH probes capable of binding to G-box sequences (G-box binders) but not having G-box sequences in their 
promoter regions (being sources only); ellipse nodes indicate the bHLH probes having G-box sequences in their promoter regions but not known 
as the G-box binders (being targets only); round rectangle nodes are the G-box binders having G-box sequences in their promoter regions (being 
both sources and targets). The shade of the fill color in the node represents the total degree of the node. A list of all the probes (nodes) used in the 
study is provided in Additional file 2: Table S1, and the sub-network for each source probe is in Additional file 2: Table S2
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pCID(OsbHLH056-1|Tj; OsbHLH025-1) values were 
insignificant (p-value > 0.05). All 72 source probes were 
processed using the same criteria (stopping when either 
encountering a target-only gene or having all insignificant 
CID/pCID values), and their resulting sub-networks are 
provided in Supp Table S2. Three of the 72 sources (Osb-
HLH083, OsbHLH144, and OsbHLH135) did not have 
significant CID values and their sub-networks were not 
further extended. Half of the 72 sub-networks expanded 
to only one target from the source; 28 sub-networks 

expanded to two targets; and 6 sub-networks expanded 
to three or four targets.

Discussion
The simulations verified the sensitivity and specificity 
of detecting directed gene–gene association by using CID/
pCID
The medians and interquartile ranges of some 
CID and pCID values summarized from the 
100 simulations are shown in Table  3. The 
CID values of A11 to a directed or undirected 

Table 3  Summary of estimated CID and pCID values in 100 simulations

IQR interquartile range, sig. prop. significant proportion

n = 25 n = 50 n = 100

Median (IQR) Sig. prop. Median (IQR) Sig. prop. Median (IQR) Sig. prop.

CID(A11|A21) 0.197 (0.053) 1.00 0.205 (0.053) 1.00 0.232 (0.038) 1.00

CID(A11|A22) 0.110 (0.057) 0.86 0.123 (0.052) 1.00 0.140 (0.033) 1.00

CID(A11|A31) 0.135 (0.063) 0.93 0.146 (0.061) 1.00 0.160 (0.035) 1.00

CID(A11|A32) 0.113 (0.071) 0.86 0.123 (0.050) 1.00 0.133 (0.038) 1.00

CID(A11|B) 0.028 (0.037) 0.06 0.016 (0.017) 0.13 0.012 (0.008) 0.16

CID(A21|A11) 0.194 (0.061) 1.00 0.202 (0.051) 1.00 0.231 (0.030) 1.00

pCID(A11|A22; A21) 0.078 (0.043) 0.74 0.082 (0.050) 0.96 0.084 (0.030) 1.00

pCID(A11|A31; A21) 0.036 (0.032) 0.22 0.030 (0.023) 0.55 0.017 (0.017) 0.83

pCID(A11|A32; A21) 0.031 (0.032) 0.19 0.022 (0.021) 0.40 0.012 (0.016) 0.72

pCID(A11|B; A21) 0.028 (0.035) 0.04 0.008 (0.019) 0.09 − 0.010 (0.015) 0.09

pCID(A21|A22; A11) 0.036 (0.031) 0.19 0.021 (0.022) 0.33 0.009 (0.014) 0.61

pCID(A22|A11; A21) 0.065 (0.045) 0.26 0.068 (0.036) 0.69 0.063 (0.025) 0.99

pCID(A21|A31; A11, A22) 0.119 (0.045) 0.96 0.124 (0.040) 1.00 0.128 (0.028) 1.00

pCID(A21|A32; A11, A22) 0.090 (0.047) 0.78 0.093 (0.044) 0.99 0.095 (0.024) 1.00

pCID(A21|B; A11, A22) 0.037 (0.032) 0.07 0.025 (0.019) 0.08 0.007 (0.017) 0.12

pCID(A11|A31; A21, A22) 0.034 (0.024) 0.12 0.026 (0.023) 0.33 0.017 (0.015) 0.68

pCID(A22|A31; A11, A21) 0.016 (0.020) 0.00 0.012 (0.014) 0.01 0.005 (0.012) 0.01

pCID(A31|A21; A11, A22) 0.111 (0.055) 0.77 0.112 (0.039) 0.99 0.125 (0.022) 1.00

pCID(A21|A32; A11, A22, A31) 0.048 (0.038) 0.29 0.056 (0.030) 0.88 0.058 (0.024) 1.00

pCID(A21|B; A11, A22, A31) 0.033 (0.029) 0.03 0.022 (0.015) 0.08 0.009 (0.019) 0.17

pCID(A11|A32; A21, A22, A31) 0.021 (0.021) 0.01 0.016 (0.016) 0.03 0.010 (0.010) 0.14

pCID(A22|A32; A11, A21, A31) 0.024 (0.021) 0.01 0.015 (0.020) 0.02 0.013 (0.013) 0.02

pCID(A31|A32; A11, A21, A22) 0.032 (0.026) 0.08 0.030 (0.021) 0.18 0.026 (0.015) 0.41

pCID(A32|A21; A11, A22, A31) 0.041 (0.037) 0.02 0.045 (0.022) 0.12 0.049 (0.017) 0.59

pCID(A11|B; A21, A22, A31, A32) 0.038 (0.036) 0.02 0.028 (0.022) 0.15 0.018 (0.018) 0.12

pCID(A21|B; A11, A22, A31, A32) 0.026 (0.023) 0.03 0.021 (0.016) 0.14 0.011 (0.014) 0.22

pCID(A22|B; A11, A21, A31, A32) 0.058 (0.030) 0.03 0.047 (0.023) 0.09 0.040 (0.018) 0.12

pCID(A31|B; A11, A21, A22, A32) 0.040 (0.026) 0.04 0.031 (0.022) 0.17 0.022 (0.017) 0.14

pCID(A32|B; A11, A21, A22, A31) 0.045 (0.032) 0.04 0.039 (0.022) 0.14 0.029 (0.020) 0.18

CID(B|A11) 0.027 (0.029) 0.08 0.017 (0.016) 0.07 0.012 (0.010) 0.10

CID(B|A21) 0.022 (0.023) 0.06 0.014 (0.013) 0.04 0.010 (0.007) 0.08

CID(B|A22) 0.019 (0.022) 0.03 0.011 (0.012) 0.05 0.008 (0.006) 0.04

CID(B|A31) 0.020 (0.024) 0.08 0.013 (0.015) 0.08 0.008 (0.009) 0.11

CID(B|A32) 0.019 (0.016) 0.05 0.013 (0.017) 0.11 0.008 (0.006) 0.09
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associated node were much larger than CID(A11|B)’s 
to the unassociated B. Also, it could be observed 
that, on average, CID(A11|A21) > CID(A11|A22), 
CID(A11|A31) > CID(A11|A32), and CID(A11|A21) 
> max(CID(A11|A31), CID(A11|A32)). The order of 
the average CID values followed the order of associa-
tion strengths of the nodes to A11 (Fig. 3a). Therefore, 
a CID value can not only distinguish the existence of 
an association but also reflect the strength of the asso-
ciation and successfully pick the direct (or strongest) 
association among all possible connections. On the 
other hand, since 100% of the pCID(A21|A31; A11) 
values were significant at α = 0.05 and the medians of 
pCID(A21|A31; A11) were the largest in different sam-
ple sizes, A31 was the most likely to be selected after 
A21 eliminating the effects from A11. For N = 25, A22 
was more likely selected after A31 and A21 [63% of the 
pCID(A11|A22; A21, A31) values were significant and 
pCID(A11|A22; A21, A31) had the largest median]. 
A32 [29% of the pCID(A21|A32; A11, A22, A31) val-
ues were significant and pCID(A21|A32; A11, A22, 
A31) had the largest median] might be selected as the 
last node associated with A11. With similar arguments, 
for N = 50, A21, A31, A32, and A22 were consecutively 
identified; for N = 100, A21, A31, A22, and A32 were 
consecutively identified.

However, the false networks were built spontaneously 
without consensus. All of the false networks that started 
from B of the same combination of nodes only appeared 
less than or equal to five times in 100 simulations for 
N = 25, 50, and 100. Therefore, the CID/pCID method 
robustly identified the relationships between nodes and 
the extended the association network. The asymmetric 
property of the CID and pCID was utilized to infer causal 
effects in the network. When CID(Y|X) was more sig-
nificant than CID(X|Y) or when pCID(Y|X; Z) was more 
significant than pCID(X|Y; Z), Y was claimed to be the 
source of the relationship between X and Y. In Fig. 3b–d, 
the numbers pointing in the correct directions are shown 
beside the arrows outside of the parentheses, whereas the 
numbers pointing in the incorrect directions are shown 
inside the parentheses. More than 90% of the significant 
A21–A32 and A11–A22 connections were with correct 
directions. Although the A11–A21 and A21–A31 asso-
ciations were identified in more than 85% of the simula-
tions for all the sample sizes, the percentages of arrows 
pointing in the correct directions might have been as few 
as 44% (A21–A31 for N = 100). The simulation results 
implied that a large sample size would aggravate the con-
fusion regarding causality. For example, while 71 out of 
86 (82.6%) arrows from A21 pointed to A31 for N = 25 
and 67 out of 99 (67.7%) arrows from A21 pointed to 
A31 for N = 50, only 44 out of 100 (44.0%) arrows from 

A21 pointed to A31 for N = 100. We conjecture that the 
strong association between A11 and A21 would disguise 
the cause-effect relationship between them.

Literature confirmed the results of CBF‑COR pathway 
reconstruction in Arabidopsis
C-repeat binding factors (CBF) bind to the promoter 
regions of downstream cold-regulated (COR) genes and 
induce COR genes expression under cold stress (Fowler 
and Thomashow 2002; McKhann et  al. 2008; Doherty 
et  al. 2009; Zhao et  al. 2016). A heatmap and cluster 
analysis of the expression fold changes of CBF and COR 
genes at different time points after cold treatment rela-
tive to their corresponding control samples is shown 
in Fig.  6. The expressions of the CBF genes under cold 
stress increased earlier than those of the COR genes in 
both root and shoot tissues. Among them, CBF3 had 
the highest relative expressions from 0.5 to 12  h(s) in 
root tissues and from 1 to 12 h(s) in shoot tissues; this 
was reflected in the outcome that CBF3 was identified 
as the primary inducer of COR genes in our CID/pCID 
network results (Fig.  4a). In fact, it was evidenced that 
COR47, COR78, COR15A, COR15B, and COR6.6 can 
be activated by CBF3 under cold stress (Sakuma et  al. 
2006). The target genes, COR47 and COR6.6, had similar 
expression levels, while COR15A and COR15B had simi-
lar expression levels. The CBF-COR GRN reconstructed 
by CID/pCID reflected their similarities by linking 
COR47-COR6.6 and COR15A-COR15B. In particular, in 
root samples, the expressions of COR78 were induced 
as early as 6H after cold treatment; it reacted before the 
other COR genes.

Experiments based on transgenic plants constitutively 
expressing CBF1, CBF2, and CBF3 have suggested that 
overexpression of the three genes induces the expres-
sion of similar gene sets, including COR47, COR6.6, 
and COR78 (Gilmour et  al. 2004). RNA blot analysis 
has been conducted by others to confirm that the over-
expression of CBF1 and CBF3 would induce COR15A, 
COR78, COR47, and COR6.6 gene expressions (Kasuga 
et  al. 1999; Taji et  al. 2002; Seki et  al. 2002; Fowler and 
Thomashow 2002). McKhann et al. (2008) reported that 
the expression of COR15B may last for 5  weeks after 
cold treatment, while COR47 was only expressed within 
24 h after cold treatment. The expression patterns of the 
microarray data investigated in this study were consistent 
with their findings (Fig. 6); COR47 was set upstream rela-
tive to COR15B in the resulting network (Fig. 4a).

Literature supported the discovered bHLH GRN in rice
A family of bHLH (basic helix–loop–helix) transcrip-
tion factors in plants plays a principal role in various 
developmental processes (Ding et  al. 2009; Chen and 
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Chory 2011; Cui et  al. 2016) that might be affected 
when plants suffer abiotic stresses. In this study, we 
explored the responses of the OsbHLH genes and 
their potential target genes under abiotic stresses. We 
combined all the resulting paths starting from all the 
sources to form the bHLH GRN (Fig. 5). The numbers 
in the node are the shortened ID numbers of the bHLH 
genes (for example, “001” stands for OsbHLH001 in 
rice). The resulting network involved 83 nodes and 
107 edges, while some probes not connected to any 
other probe (nodes having “NA” for in-degree and out-
degree in Additional file  2: Table  S1) were excluded. 
The network obeys the power law of a biological net-
work with an average degree of 2.58 (Additional file 1: 
Figure S2). The source having the largest out-degree 
value was OsbHLH104-2 (out-degree = 8), and the 
target having the largest in-degree value was Osb-
HLH149-1 (in-degree = 11). OsbHLH104-2 was also 
the most connected gene (in-degree + out-degree = 17), 
while OsbHLH060 was the second most connected one 
(in-degree + out-degree = 15).

According to a previous study, OsbHLH104 (LOC_
Os07g05010), a putative phytochrome-interacting fac-
tor (OsPIF14), binds to N-boxes [CACG(A/C)G] in the 
OsDREB1B promoter and represses OsDREB1B gene 
expression, which reduces freezing tolerance in rice 
(Cordeiro et al. 2016). Interestingly, according to another 
study, PIF3/AtbHLH008 (At1g09530), an OsPIF14/Osb-
HLH104 homolog repressing photomorphogenesis, also 

has a negative impact on freezing tolerance by directly 
down-regulating the expression of CBFs in Arabidopsis 
(Jiang et al. 2017). These previous studies have indicated 
that OsbHLH104 plays a pivotal role in the connection 
between light and stress signaling.

According to one study, OsbHLH060 (LOC_
Os08g04390), also known as OsPRI1 [POSITIVE REGU-
LATOR OF IRON HOMEOSTASIS 1], directly activates 
the expression of OsIRO2 [iron-related transcription 
factor 2/OsbHLH056 (LOC_Os01g72370)] and OsIRO3 
[OsbHLH063 (LOC_Os03g26210)], which mediates rice 
responses to Fe deficiency (Zhang et  al. 2017). Simi-
larly, another study has indicated that the AtbHLH034 
(At3g23210), 104 (At4g14410), 105/ILR3 [IAA-LEU-
CINE RESISTANT 3 (At5g54680)], and 115 (At1g51070) 
genes, which are highly homologous to the OsPRI1/
OsbHLH060 gene, directly activate the transcription of 
the Ib subgroup bHLH genes, AtbHLH38/39/100/101 
(At3g56970/At3g56980/At2g41240/At5g04150), and 
PYE [POPEYE/AtbHLH047 (At3g47640), an OsIRO3/
OsbHLH063 homolog], that regulate Fe homeostasis in 
Arabidopsis (Wang et  al. 2007; Long et  al. 2010; Zhang 
et  al. 2015; Li et  al. 2016; Liang et  al. 2017). Moreover, 
AtbHLH104 has been found to positively regulate sev-
eral heavy metal detoxification-associated genes, such 
as IREG2 (iron regulated 2), MTP3 (metal tolerance 
protein 3), HMA3 (heavy metal ATPase 3), and NAS4 
(nicotianamine synthase 4), which confer tolerance to 
cadmium stress in Arabidopsis (Yao et  al. 2018). These 

Fig. 6  A heatmap and cluster analysis of the expression fold changes of CBF and COR genes at different time points after cold treatment relative to 
their corresponding control samples
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previous studies suggest the possibility that OsbHLH060 
is involved in cross-talk between Fe homeostasis and Cd 
stress tolerance.

Utilization of CID/pCID on modern transcriptomic data
In this study, we demonstrated the construction of the 
GRN using microarray data. The main reason using 
microarray data is that after more than two decades of 
accumulation in the database, there are enough micro-
array expression samples for network construction. 
According to the simulation results, when the sample 
size is as small as 25 or 50, more than 50% of the result-
ing networks recovered only upstream regulatory events 
in the real network. Along with the advance of biotech-
nology, measuring global gene expression profiles by the 
whole transcriptome shotgun sequencing (RNA-seq) and 
single cell RNA-seq (scRNAseq) are common practice 
nowadays. It can be expect to have adequate sequenc-
ing data in the near future for network construction. It 
is worthwhile to mention that the gene expressions by 
sequencing are present by non-negative integers called 
‘read counts’. The read counts are not normally distrib-
uted. Instead, the read counts are commonly analyzed as 
random samples from a Poisson or a negative binomial 
distribution (Robinson et al. 2010; Love et al. 2014, p. 2). 
The CID/pCID independent of distributional assump-
tions can be directly applied to sequencing data without 
a doubt. The non-distribution assumption of CID/pCID 
also implies the possibilities of applying CID/pCID on 
integrated transcriptomic, proteomic, metabolic, pheno-
typic data of different formats to construct bipartite or 
multipartite networks (Bass et al. 2013).

Conclusion
Rapidly accumulated publicly accessible gene expression 
datasets have made it possible to systematically construct 
gene regulatory networks. In this study, we adopted a 
diverse dataset collected under different abiotic stresses. 
This strategy not only increased the sample size for sta-
tistical analysis but also made it possible to capture the 
gene–gene interactions under various circumstances 
simultaneously. Surely different combinations of gene 
expression datasets can be selected to better repre-
sent the population of interest based on the research 
purposes.

The proposed method makes use of the asymmetry of 
CID/pCID to determine the path directions in the gene 
regulatory network. The directions inferred in this study 
were then partly verified through literature reviews, 
although more finely designed experiments must be per-
formed to piece together more solid biological evidence. 
In this study, we nonetheless demonstrated an exhaustive 

search in the simulation as well as heuristic methods in 
real datasets to accelerate the computation. The heuris-
tic approach applied to the bHLH genes adopted as many 
resource/target bHLH genes as possible to demonstrate 
a mechanical way to build a comprehensive network. 
One can also pick fewer transcription factors or genes 
of interest in order to conduct an exhaustive search on a 
smaller scale.

In conclusion, this study proposed a three-step pro-
cedure to construct a directed gene regulatory network 
starting from the identification of incorporated genes 
connected as local pathways. The method is potentially 
applicable for deciphering causal events in proteomics, 
metabolomics, and epigenomics. Biologists can also cus-
tomize the desired complexity of the inferred networks 
based on the complexity of the investigated biological 
systems. This flexible and constructive method may help 
to efficiently decipher gene regulatory pathways and 
achieve higher predictive power in practical applications.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s4052​9-019-0268-8.

Additional file 1: Figure S1. Summary of the networks reconstructed 
in the simulations for N = (A) 25, (B) 50, and (C) 100. Networks consisting 
of the same set of nodes were grouped together. Only groups occurred 
at least 5 times are shown. Figure S2. The scatter plot of the log(total 
degree) and the log(frequency) in the bHLH gene regulatory network. 
The inversely proportional trend between the log(total degree) and the 
log(frequency) indicates the resulting network obeys the power law.

Additional file 2: Table S1. The list of 122 bHLH-related probess in 
the microarray. The ones recognize the G-box in their targets’ promoter 
regions (Gonzalez 2015) are classified as the ‘Source’ genes; the ones 
containing G-box sequences in their promoter regions are classified as 
the ‘Target’ genes. ‘in.degree’ is the number of directed edge(s) using the 
probe as the target; ‘out.degree’ is the number of directed edge(s) using 
the probe as the source; ‘total.degree’ = ’in.degree’ + ’out.degree’. Table S2. 
The resulting sub-networks for bHLH source probes.

Abbreviations
bHLH: basic helix–loop–helix; CBF: C-repeat binding factor; CID: the coefficient 
of intrinsic dependence; COR: cold-regulated gene; GSAA: gene set associa‑
tion analysis; GRN: gene regulatory network; NCBI-GEO: National Center for 
Biotechnology Information-Gene Expression Omnibus; PCC: Pearson correla‑
tion coefficient; pCID: partial coefficient of intrinsic dependence; pPCC: partial 
Pearson correlation coefficient; RAP-DB: Rice Annotation Project Database; 
RMA: robust multichip average; TAIR: the Arabidopsis Information Resource; TF: 
transcription factor.

Authors’ contributions
LYDL drafted the manuscript, initiated the research, revised the manuscript, 
and provided funding for the study. YCH performed most of the analysis. HCC, 
YWY, and MCC validated the inferred gene regulatory events. All authors read 
and approved the final manuscript.

Funding
This research is supported by Ministry of Science and Technology in Taiwan, 
ROC (Grant No. MOST 108-2313-B-002-050).

https://doi.org/10.1186/s40529-019-0268-8
https://doi.org/10.1186/s40529-019-0268-8


Page 15 of 16Liu et al. Bot Stud           (2019) 60:22 

Availability of data and materials
The microarray experiments in this study can be downloaded from the 
Arabidopsis Information Resource (TAIR) database (https​://www.arabi​dopsi​
s.org/servl​ets/Searc​h?type=expr&searc​h_actio​n=new_searc​h) (submission 
number: ME00325), and the NCBI-GEO database (https​://www.ncbi.nlm.nih.
gov/geo/) (accession numbers: GSE6901 and GSE14275).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Agronomy, National Taiwan University, Taipei 106, Taiwan. 
2 Department of Horticulture and Landscape Architecture, National Taiwan 
University, Taipei 106, Taiwan. 

Received: 9 May 2019   Accepted: 17 August 2019

References
Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their 

role in drought response mechanisms. Int J Mol Sci 16:15811–15851. 
https​://doi.org/10.3390/ijms1​60715​811

Bass JIF, Diallo A, Nelson J et al (2013) Using networks to measure similarity 
between genes: association index selection. Nat Methods 10:1169–1176. 
https​://doi.org/10.1038/nmeth​.2728

Chen M, Chory J (2011) Phytochrome signaling mechanisms and the 
control of plant development. Trends Cell Biol 21:664–671. https​://doi.
org/10.1016/j.tcb.2011.07.002

Cordeiro AM, Figueiredo DD, Tepperman J et al (2016) Rice phytochrome-
interacting factor protein OsPIF14 represses OsDREB1B gene expression 
through an extended N-box and interacts preferentially with the active 
form of phytochrome B. Biochim Biophys Acta BBA Gene Regul Mech 
1859:393–404. https​://doi.org/10.1016/j.bbagr​m.2015.12.008

Cui J, You C, Zhu E et al (2016) Feedback regulation of DYT1 by interactions 
with downstream bHLH factors promotes DYT1 nuclear localization and 
anther development. Plant Cell 28:1078–1093. https​://doi.org/10.1105/
tpc.15.00986​

de la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful 
associations in genomic data using partial correlation coefficients. Bioin‑
formatics 20:3565–3574. https​://doi.org/10.1093/bioin​forma​tics/bth44​5

Ding W, Yu Z, Tong Y et al (2009) A transcription factor with a bHLH domain 
regulates root hair development in rice. Cell Res 19:1309–1311. https​://
doi.org/10.1038/cr.2009.109

Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabi‑
dopsis CAMTA transcription factors in cold-regulated gene expression 
and freezing tolerance. Plant Cell 21:972–984. https​://doi.org/10.1105/
tpc.108.06395​8

Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene 
expression and hybridization array data repository. Nucleic Acids Res 
30:207–210

Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates 
that multiple regulatory pathways are activated during cold acclimation 
in addition to the CBF cold response pathway. Plant Cell 14:1675–1690. 
https​://doi.org/10.1105/tpc.00348​3

Fujita M, Fujita Y, Noutoshi Y et al (2006) Crosstalk between abiotic and biotic 
stress responses: a current view from the points of convergence in the 
stress signaling networks. Curr Opin Plant Biol 9:436–442. https​://doi.
org/10.1016/j.pbi.2006.05.014

Garcia-Hernandez M, Berardini T, Chen G et al (2002) TAIR: a resource for inte‑
grated Arabidopsis data. Funct Integr Genomics 2:239–253. https​://doi.
org/10.1007/s1014​2-002-0077-z

Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional 
activators CBF1, CBF2, and CBF3 have matching functional activities. 

Plant Mol Biol 54:767–781. https​://doi.org/10.1023/B:PLAN.00000​40902​
.06881​.d4

Gomez-Casati DF, Zanor MI, Busi MV (2013) Metabolomics in plants and 
humans: applications in the prevention and diagnosis of diseases. 
Biomed Res Int. https​://doi.org/10.1155/2013/79252​7

Gonzalez DH (2015) Plant transcription factors: evolutionary, structural and 
functional aspects. Academic Press, Cambridge

Hayfield T, Racine JS (2008) Nonparametric econometrics: the np package. J 
Stat Softw 27:5

Higa CHA, Hashimoto RF, Hirata R, et al (2009) Inference of gene regula‑
tory network using temporal coefficient of determination obtained 
from ergodic Markov chains. In: 2009 IEEE International Workshop on 
Genomic Signal Processing and Statistics. pp 1–4

Hsiao Y-C, Liu L-YD (2016) A stepwise approach of finding dependent vari‑
ables via coefficient of intrinsic dependence. J Comput Biol 23:42–55

Hsing T, Liu L-Y, Brun M, Dougherty ER (2005) The coefficient of intrin‑
sic dependence (feature selection using el CID). Pattern Recognit 
38:623–636. https​://doi.org/10.1016/j.patco​g.2004.09.002

Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and 
summaries of high density oligonucleotide array probe level data. 
Biostatistics 4:249–264. https​://doi.org/10.1093/biost​atist​ics/4.2.249

Jiang B, Shi Y, Zhang X et al (2017) PIF3 is a negative regulator of the CBF 
pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci 
114:E6695–E6702. https​://doi.org/10.1073/pnas.17062​26114​

Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory 
networks. Nat Rev Mol Cell Biol 9:770–780. https​://doi.org/10.1038/
nrm25​03

Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, 
and freezing tolerance by gene transfer of a single stress-induc‑
ible transcription factor. Nat Biotechnol 17:287–291. https​://doi.
org/10.1038/7036

Kiribuchi K, Jikumaru Y, Kaku H et al (2005) Involvement of the basic helix-
loop-helix transcription factor RERJ1 in wounding and drought stress 
responses in rice plants. Biosci Biotechnol Biochem 69:1042–1044. https​
://doi.org/10.1271/bbb.69.1042

Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and 
cross-talk. Trends Plant Sci 6:262–267. https​://doi.org/10.1016/S1360​
-1385(01)01946​-X

Le Novère N (2015) Quantitative and logic modelling of molecular and gene 
networks. Nat Rev Genet 16:146–158. https​://doi.org/10.1038/nrg38​85

Li X, Duan X, Jiang H et al (2006) Genome-wide analysis of basic/helix-loop-
helix transcription factor family in rice and Arabidopsis. Plant Physiol 
141:1167–1184. https​://doi.org/10.1104/pp.106.08058​0

Li X, Zhang H, Ai Q et al (2016) Two bHLH transcription factors, bHLH34 and 
bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol 
170:2478–2493. https​://doi.org/10.1104/pp.15.01827​

Liang G, Zhang H, Li X et al (2017) bHLH transcription factor bHLH115 regu‑
lates iron homeostasis in Arabidopsis thaliana. J Exp Bot 68:1743–1755. 
https​://doi.org/10.1093/jxb/erx04​3

Liseron-Monfils C, Ware D (2015) Revealing gene regulation and associations 
through biological networks. Curr Plant Biol 3–4:30–39. https​://doi.
org/10.1016/j.cpb.2015.11.001

Liu LD (2005) Coefficient of intrinsic dependence: a new measure of associa‑
tion. Texas A&M University, College Station

Liu L-YD, Chen C-Y, Chen M-JM et al (2009) Statistical identification of gene 
association by CID in application of constructing ER regulatory network. 
BMC Bioinform 10:85. https​://doi.org/10.1186/1471-2105-10-85

Liu L-YD, Chang L-Y, Kuo W-H et al (2012) In silico prediction for regulation of 
transcription factors on their shared target genes indicates relevant clini‑
cal implications in a breast cancer population. Cancer Inform 11:113–137. 
https​://doi.org/10.4137/CIN.S8470​

Long TA, Tsukagoshi H, Busch W et al (2010) The bHLH transcription factor 
POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant 
Cell 22:2219–2236. https​://doi.org/10.1105/tpc.110.07409​6

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https​://
doi.org/10.1186/s1305​9-014-0550-8

Mantione KJ, Kream RM, Kuzelova H et al (2014) Comparing bioinformatic 
gene expression profiling methods: microarray and RNA-seq. Med Sci 
Monit Basic Res 20:138–141. https​://doi.org/10.12659​/MSMBR​.89210​1

https://www.arabidopsis.org/servlets/Search%3ftype%3dexpr%26search_action%3dnew_search
https://www.arabidopsis.org/servlets/Search%3ftype%3dexpr%26search_action%3dnew_search
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3390/ijms160715811
https://doi.org/10.1038/nmeth.2728
https://doi.org/10.1016/j.tcb.2011.07.002
https://doi.org/10.1016/j.tcb.2011.07.002
https://doi.org/10.1016/j.bbagrm.2015.12.008
https://doi.org/10.1105/tpc.15.00986
https://doi.org/10.1105/tpc.15.00986
https://doi.org/10.1093/bioinformatics/bth445
https://doi.org/10.1038/cr.2009.109
https://doi.org/10.1038/cr.2009.109
https://doi.org/10.1105/tpc.108.063958
https://doi.org/10.1105/tpc.108.063958
https://doi.org/10.1105/tpc.003483
https://doi.org/10.1016/j.pbi.2006.05.014
https://doi.org/10.1016/j.pbi.2006.05.014
https://doi.org/10.1007/s10142-002-0077-z
https://doi.org/10.1007/s10142-002-0077-z
https://doi.org/10.1023/B:PLAN.0000040902.06881.d4
https://doi.org/10.1023/B:PLAN.0000040902.06881.d4
https://doi.org/10.1155/2013/792527
https://doi.org/10.1016/j.patcog.2004.09.002
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1073/pnas.1706226114
https://doi.org/10.1038/nrm2503
https://doi.org/10.1038/nrm2503
https://doi.org/10.1038/7036
https://doi.org/10.1038/7036
https://doi.org/10.1271/bbb.69.1042
https://doi.org/10.1271/bbb.69.1042
https://doi.org/10.1016/S1360-1385(01)01946-X
https://doi.org/10.1016/S1360-1385(01)01946-X
https://doi.org/10.1038/nrg3885
https://doi.org/10.1104/pp.106.080580
https://doi.org/10.1104/pp.15.01827
https://doi.org/10.1093/jxb/erx043
https://doi.org/10.1016/j.cpb.2015.11.001
https://doi.org/10.1016/j.cpb.2015.11.001
https://doi.org/10.1186/1471-2105-10-85
https://doi.org/10.4137/CIN.S8470
https://doi.org/10.1105/tpc.110.074096
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.12659/MSMBR.892101


Page 16 of 16Liu et al. Bot Stud           (2019) 60:22 

McKhann HI, Gery C, Bérard A et al (2008) Natural variation in CBF gene 
sequence, gene expression and freezing tolerance in the Versailles core 
collection of Arabidopsis thaliana. BMC Plant Biol 8:105. https​://doi.
org/10.1186/1471-2229-8-105

Nakamura J, Yuasa T, Huong TT et al (2011) Rice homologs of inducer of CBF 
expression (OsICE) are involved in cold acclimation. Plant Biotechnol 
28:303–309. https​://doi.org/10.5511/plant​biote​chnol​ogy.11.0421a​

Pérez-de-Castro AM, Vilanova S, Cañizares J et al (2012) Application of 
genomic tools in plant breeding. Curr Genomics 13:179–195. https​://doi.
org/10.2174/13892​02128​00543​084

Pilpel Y, Sudarsanam P, Church GM (2001) Identifying regulatory networks by 
combinatorial analysis of promoter elements. Nat Genet 29:153–159. 
https​://doi.org/10.1038/ng724​

Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression 
analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
https​://doi.org/10.1093/nar/gkv00​7

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package 
for differential expression analysis of digital gene expression data. Bioin‑
formatics 26:139–140. https​://doi.org/10.1093/bioin​forma​tics/btp61​6

Rykunov D, Beckmann ND, Li H et al (2016) A new molecular signature 
method for prediction of driver cancer pathways from transcriptional 
data. Nucleic Acids Res 44:e110. https​://doi.org/10.1093/nar/gkw26​9

Sakai H, Lee SS, Tanaka T et al (2013) Rice Annotation Project Database (RAP-
DB): an integrative and interactive database for rice genomics. Plant Cell 
Physiol 54:e6. https​://doi.org/10.1093/pcp/pcs18​3

Sakuma Y, Maruyama K, Osakabe Y et al (2006) Functional analysis of an 
Arabidopsis transcription factor, DREB2A, involved in drought-responsive 
gene expression. Plant Cell 18:1292–1309. https​://doi.org/10.1105/
tpc.105.03588​1

Schaller GE (2012) Ethylene and the regulation of plant development. BMC 
Biol 10:9. https​://doi.org/10.1186/1741-7007-10-9

Segal E, Friedman N, Kaminski N et al (2005) From signatures to models: 
understanding cancer using microarrays. Nat Genet 37:S38–S45. https​://
doi.org/10.1038/ng156​1

Seki M, Narusaka M, Kamiya A et al (2002) Functional annotation of a full-
length Arabidopsis cDNA collection. Science 296:141–145. https​://doi.
org/10.1126/scien​ce.10710​06

Seo J-S, Joo J, Kim M-J et al (2011) OsbHLH148, a basic helix-loop-helix protein, 
interacts with OsJAZ proteins in a jasmonate signaling pathway leading 
to drought tolerance in rice. Plant J 65:907–921. https​://doi.org/10.1111/
j.1365-313X.2010.04477​.x

Simcha DM, Younes L, Aryee MJ, Geman D (2013) Identification of direction 
in gene networks from expression and methylation. BMC Syst Biol 7:118. 
https​://doi.org/10.1186/1752-0509-7-118

Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: 
mutual information, correlation, and model based indices. BMC Bioinform 
13:328. https​://doi.org/10.1186/1471-2105-13-328

Taji T, Ohsumi C, Iuchi S et al (2002) Important roles of drought- and cold-
inducible genes for galactinol synthase in stress tolerance in Arabidopsis 
thaliana. Plant J Cell Mol Biol 29:417–426

Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) 
Toward understanding transcriptional regulatory networks in abi‑
otic stress responses and tolerance in rice. Rice 5:6. https​://doi.
org/10.1186/1939-8433-5-6

Tsai C-A, Liu L-YD (2013) Identifying gene set association enrichment using 
the coefficient of intrinsic dependence. PLoS ONE 8:e58851. https​://doi.
org/10.1371/journ​al.pone.00588​51

Wang H-Y, Klatte M, Jakoby M et al (2007) Iron deficiency-mediated stress 
regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 
226:897–908. https​://doi.org/10.1007/s0042​5-007-0535-x

Yao X, Cai Y, Yu D, Liang G (2018) bHLH104 confers tolerance to cadmium 
stress in Arabidopsis thaliana. J Integr Plant Biol 60:691–702. https​://doi.
org/10.1111/jipb.12658​

Zhang J, Liu B, Li M et al (2015) The bHLH transcription factor bHLH104 inter‑
acts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in 
Arabidopsis. Plant Cell 27:787–805. https​://doi.org/10.1105/tpc.114.13270​
4

Zhang H, Li Y, Yao X et al (2017) Positive regulator of iron homeostasis1, OsPRI1, 
facilitates iron homeostasis. Plant Physiol 175:543–554. https​://doi.
org/10.1104/pp.17.00794​

Zhao C, Zhang Z, Xie S et al (2016) Mutational evidence for the critical role of 
CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol 
171:2744–2759. https​://doi.org/10.1104/pp.16.00533​

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1186/1471-2229-8-105
https://doi.org/10.1186/1471-2229-8-105
https://doi.org/10.5511/plantbiotechnology.11.0421a
https://doi.org/10.2174/138920212800543084
https://doi.org/10.2174/138920212800543084
https://doi.org/10.1038/ng724
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/nar/gkw269
https://doi.org/10.1093/pcp/pcs183
https://doi.org/10.1105/tpc.105.035881
https://doi.org/10.1105/tpc.105.035881
https://doi.org/10.1186/1741-7007-10-9
https://doi.org/10.1038/ng1561
https://doi.org/10.1038/ng1561
https://doi.org/10.1126/science.1071006
https://doi.org/10.1126/science.1071006
https://doi.org/10.1111/j.1365-313X.2010.04477.x
https://doi.org/10.1111/j.1365-313X.2010.04477.x
https://doi.org/10.1186/1752-0509-7-118
https://doi.org/10.1186/1471-2105-13-328
https://doi.org/10.1186/1939-8433-5-6
https://doi.org/10.1186/1939-8433-5-6
https://doi.org/10.1371/journal.pone.0058851
https://doi.org/10.1371/journal.pone.0058851
https://doi.org/10.1007/s00425-007-0535-x
https://doi.org/10.1111/jipb.12658
https://doi.org/10.1111/jipb.12658
https://doi.org/10.1105/tpc.114.132704
https://doi.org/10.1105/tpc.114.132704
https://doi.org/10.1104/pp.17.00794
https://doi.org/10.1104/pp.17.00794
https://doi.org/10.1104/pp.16.00533

	Construction of gene causal regulatory networks using microarray data with the coefficient of intrinsic dependence
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Coefficient of intrinsic dependence (CID) and partial coefficient of intrinsic dependence (pCID)
	Strategy to construct the gene regulatory network
	Simulation methods
	Microarray expression data

	Results
	Reconstruction of a pseudo network in the simulation
	Analysis of CBF-COR pathway under cold stress in Arabidopsis thaliana
	Construction of rice bHLH gene regulatory network under abiotic stress

	Discussion
	The simulations verified the sensitivity and specificity of detecting directed gene–gene association by using CIDpCID
	Literature confirmed the results of CBF-COR pathway reconstruction in Arabidopsis
	Literature supported the discovered bHLH GRN in rice
	Utilization of CIDpCID on modern transcriptomic data

	Conclusion
	References




