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Abstract 

Background:  Many groups of fungi live as an endophyte in plants. Both published and undiscovered bioactive com‑
pounds can be found in endophytic fungi. Various biological activities of bioactive compounds from endophytic fungi 
had been reported, including anti-inflammatory and anticancerous effects.

The chemical investigation of biologically active compounds from endophytic fungi Melaleuca leucadendra Linn. have 
not yet been stated.

Results:  One new compound, namely nigaurdiol (1), along with five known compounds, xyloketal K (2), bostrycin 
(3), deoxybostrycin (4), xylanthraquinone (5), and ergosterol (6), were isolated from the Melaleuca leucadendra Linn. 
associated fungal strain Nigrospora aurantiaca #TMU062. Their chemical structures were elucidated by spectroscopic 
data and compared with literature. All isolated compounds were evaluated for inhibitory effect of NO production in 
LPS-activated microglial BV-2 cells.

Conclusions:  Compound 6 exhibited considerable inhibitory effect on NO production with IC50 values of 
7.2 ± 1.4 µM and the survival rate of the cells was 90.8 ± 6.7% at the concentration of 10 µM.
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Background
Endophytes are defined as microorganisms that spend at 
least parts of their life cycle inhabiting in its host plants 
without causing apparent harm to the host (Hardoim 
et  al. 2015). Endophytic fungi is one of the potential 
resources for obtaining bioactive compounds because of 
its complex interaction with their host plants or other 
microorganisms within the host plants. Previous stud-
ies showed that many bioactive compounds produced 
by endophytic fungi exhibit antioxidant, anticancer, anti-
inflammatory, antimicrobial, and other biological activi-
ties (Kumari et  al. 2018; Ukwatta et  al. 2020). Some of 
the medicinal plants have been found to rear a number 

of highly diversified endophytic fungi, which could even 
produce the same compounds as their host plants. For 
instance, ginkgolide B can be produced by both Fusarium 
oxysporum and its host plant Ginkgo biloba (Cui et  al. 
2012). Thus, many of the folk medicinal plants were cho-
sen to screen the associated fungal strains with signifi-
cant biological activities in the recent past.

Melaleuca leucadendra Linn. of the Myrtaceae family is 
distributed across Australia and Southeast Asia countries 
like Indonesia (Pujiarti et al. 2011). The leaves of this fam-
ily are known to contain a high concentration of terpe-
nes with varied quality and quantity (Keszei et al. 2008). 
As a folk medicine, M. leucadendra Linn. was reported 
to exhibit antioxidant, antiproliferative, and anticancer 
activities (Rini et al. 2012; Monzote et al. 2020). However, 
related researches of the endophytic fungi from M. leu-
cadendra Linn. have not yet been reported. This study 
focuses on the bioactivity and chemical investigation of 
Nigrospora aurantiaca isolated from M. leucadendra 
Linn.
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Results and discussion
Through chemical investigation of the liquid and solid 
fermented products, one new compound together with 
five known compounds on N. aurantiaca (an endophytic 
fungi from M. leucadendra) were identified. By compar-
ing with literature data, the well-known compounds were 
recognized as xyloketal K (2) (Sun et al. 2016), bostrycin 
(3) (Stevens et al. 1979; Chen et al. 2012), deoxybostrycin 
(4) (Chen et al. 2012; Wang et al. 2013), xylanthraquinone 
(5) (Sommart et al. 2008), and ergosterol (6) (Kawai et al. 
2018).

Compound 1, a colorless oil, was determined to have a 
molecular formula of C11H18O2, ([M + H]+ m/z 183.1381, 
calcd 183.1380) by HRESIMS analysis and evidenced 
by 13C NMR spectrum. The IR spectrum confirmed the 
presence of hydroxy and olefinic functionalities at 3334 
and 1646 cm–1, respectively. The 1H NMR data (CD3OD, 
600  MHz) spectrum showed two methyl groups of δH 
1.67 (3H, d, J = 6.2 Hz, H3-1) and δH 1.77 (3H, dd, J = 6.7, 
1.2  Hz, H3-9); six methine signals at δH 3.00 (1H, dt, 
J = 7.0, 7.0  Hz, H-4), δH 5.43 (1H, dd, J = 16.4, 7.0  Hz, 
H-3), δH 5.52 (1H, dq, J = 16.4, 6.2 Hz, H-2), δH 5.70 (1H, 
dq, J = 14.8, 6.7  Hz, H-8), δH 5.94 (1H, d, J = 11.0  Hz, 
H-6), and δH 6.43 (1H, ddq, J = 14.8, 11.0, 1.2 Hz, H-7); 
and two oxygenated methylene signals at δH 3.55 and 3.63 
(each 1H, dd, J = 10.7, 7.0 Hz, H2-11) and δH 4.14 and 4.18 
(each 1H, d, J = 12.0 Hz, H2-10). The DEPT 13C NMR in 
combination with the 13C NMR (CD3OD) and HSQC 
spectrum of 1 contained 11 carbon signals correspond-
ing to two methyls at δC 16.8 (C-1) and 17.00 (C-9); six 
methines at δC 50.7 (C-4), 126.2 (C-2), 126.9 (C-7), 129.2 
(C-6), 129.6 (C-8), and 130.7 (C-3); and two methylenes 
at δC 58.1 (C-10) and 64.4 (C-11). The COSY spectrum 
(Fig. 1) revealed contiguous protons of H-9/H-8/H-7/H-6 
and H-1/H-2/H-3 /H-4 /H-11. Key cross-peaks of HMBC 
spectrum (Fig.  1) including δH 4.18 (H2-10)/δC 137.6 
(C-5), 50.4 (C-4), and 129.2 (C-6); δH 3.63 (H2-11)/δC 
137.6 (C-5), 50.4 (C-4), and 130.7 (C-3); δH 3.00 (H-4)/
δC 130.7 (C-3), 137.6 (C-5), 129.2 (C-6), and 126.2 (C-2) 
were observed. The structure of 1 was thus determined 
as shown in Fig. 2, and named nigaurdiol. The chemical 
skeleton of 1 has not been reported previously; it could 
be a recemate since the optical rorational value of 1 was 
close to zero.

All six isolates were evaluated for their inhibitory 
effects on nitric oxide (NO) production and cytotox-
icity in LPS-activated microglial BV-2 cells. For posi-
tive control, curcumin was used with an IC50 value of 
6.0 ± 0.3  µM. Compounds 3, 4, and 6 showed potently 
inhibitory effects with IC50 value of 2.3 ± 0.3, 2.5 ± 0.5, 
and 7.2 ± 1.4, respectively; however, compounds 3 and 4 
exhibited significant cytotoxicity against microglial BV-2 
cell with viabillities of 10.7 ± 0.8 and 11.3 ± 1.3% (10 µM), 

respectively. Furthermore, compound 6 showed no sig-
nificant cytotoxic effect with the survival of cells at con-
centration 10 µM of 90.8 ± 6.7%. Compounds 1, 2 and 5 
showed weak inhibitory effects and no cytotoxic activity 
(Table 1). Ergosterol (6) is the major sterol endogenously 
produced by fungi and protozoa with diverse bioac-
tivities—including anti-inflammatory, anti-cancer, and 
immune-modulatory effects (Lee et  al. 2017; Papoutsis 
et al. 2020).

Conclusions
In this report, we have identified one new compound, 
nigaurdiol (1), along with five known compounds 2 – 6 
from an endophytic fungus (identified as Nigrospora 
aurantiaca #TMU062) associated with Melaleuca leuca-
dendra Linn. Of the compounds identified, the chemical 
skeleton of nigaurdiol (1) is being shown for the first time. 
All compounds were evaluated by in-vitro NO inhibitory 
assay in the LPS-stimulated murine BV-2 microglial cell 
line. The results showed potential inhibitory activities in 
bostrycin (3), deoxybostrycin (4), and ergosterol (6) than 
nigaurdiol (1), xyloketal K (2), and xylanthraquinone 
(5) weak inhibitory activities. Bostrycin (3) and deoxy-
bostrycin (4) exhibited significant cytotoxicity against 
microglial BV-2 cell.

Methods
General experimental procedures
1H, 13C, DEPT, and 2D NMR were acquired on Agi-
lent DD2 600 MHz pectrometer (Agilent Technologies, 
Santa Clara, CA, USA). Optical rotation was measured 
with a JASCO P-2000 polarimeter (Tokyo, Japan). IR 
spectra were recorded on a JASCO FT/IR 4100 spec-
trometer (Tokyo, Japan). Sephadex LH-20 (GE Health-
care, Uppsala, Sweden) was used for open column 
chromatography. High-resolution mass spectrom-
etry data was acquired using Q Exactive Plus Hybrid 

Fig. 1  Key HMBC and COSY correlations for compound 1 
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Quadrupole-Orbitrap Mass Spectrometer (Thermo 
Fisher Scientific, Bremen, Germany) coupled with the 
Dionex UltiMate™ 3000 RSLCnano UHPLC system 
(Thermo Fisher Scientific, San Jose, CA, USA). Semi-
preparative HPLC experiments for compound puri-
fication were performed using HPLC pump L-7100 
(Hitachi, Japan) with refractiveindex (Bischoff, Leon-
berg, Germany) for detector.

Fungal material
The fungal strain Nigrospora aurantiaca was isolated 
from a healthy leaf of Melaleuca leucadendra linn col-
lected in the yard of National Taiwan University and 
was identified by sequencing the internal transcribed 
spacer regions of the rDNA (ITS). A BLAST search of the 
sequence led to the best match of Nigrospora aurantiaca. 
Mycelium Nigrospora aurantiaca #TMU062 was inocu-
lated into two different media—liquid medium and solid 
medium. Inoculation in liquid medium was done in 5 L 
serum bottles, each containing 50 g of malt extract (Bec-
ton, Dickinson and Company, Sparks, USA) and 3.5 L of 
deionized water. The fermentation was conducted with 
aeration at 25–30  °C for 14  days. As for solid medium, 
250 mL flasks were used—each containing 20 g of barley 
and 0.2 g of potato dextrose agar (Becton, Dickinson and 
Company, Sparks, USA). After adding 15  mL of deion-
ized water, they were fermented for 30 days at 27–30 °C.

Extraction and isolation
The fermented broth (9.5 L) was filtered and partitioned 
five times with equal volumes of EtOAc and subsequently 
concentrated in vacuum to obtain crude extract (5.8  g). 
The crude extract was re-dissolved in 50  mL MeOH to 
obtain MeOH layer and sediment (2.3  g). Then, the 
sediment was dissolved in 10  mL DMSO and puri-
fied by HPLC semipreparative reversed-phase column 

Fig. 2  Chemical structures of compounds 1–6 

Table 1  IC50 and cell viabillity values of compounds in BV-2 
microgial cells

Data are as the mean ± SD (n = 3)
* p < 0.05, **p < 0.01, and ***p < 0.001 compared with the stimulation (V); 
###p < 0.001 compared with the resting (R)

Compounds IC50 (µM) Cell viabillity (%)

1 32.2 ± 3.3 102.6 ± 8.8

2 30.1 ± 3.0* 98.3 ± 7.6

3 2.3 ± 0.3*** 10.7 ± 0.8***

4 2.5 ± 0.5*** 11.3 ± 1.3***

5 32.1 ± 6.7 102.8 ± 6.9

6 7.2 ± 1.4*** 90.8 ± 6.7

R 1.4 ± 0.8 100.0 ± 0

V 38.2 ± 4.7### –

Curcumin 6.0 ± 0.3 –
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(Phenomenex Luna PFP, 5  μm, 10 × 250  mm, Torrance, 
CA, USA) eluted by 65% MeOH, 2 mL/min, to obtain 3 
(tR: 12  min; 50.0  mg) and three fractions (Fr.S2-Fr.S4). 
Further purification of Fr.S3 on HPLC on a semiprepara-
tive reversed-phase column (Thermo Hypersil HS C18, 
5  μm, 10 × 250  mm, Bellefonte, PA, USA) eluted by 
50% MeOH, 2  mL/min to obtain 4 (tR: 9  min; 4.9  mg). 
The MeOH layer was concentrated under vacuum into 
15  mL, then applied into a Sephadex LH-20 column 
(2.5 i.d. × 68.5  cm) eluted by MeOH with a flow rate of 
2.5  mL/min to give forty-five fractions (25  mL) before 
combined into seven fractions as Fr.A – Fr.G based on 
similar compositions of TLC analysis. The Fr.B (1.3 g) and 
Fr.C (1.05 g) were purified by HPLC on a semipreparative 
reversed-phase column (Phenomenex Luna PFP, 5  μm, 
10 i.d. × 250 mm, Torrance, CA, USA) eluted by MeOH 
(respectively, 60% and 65%) to obtain four subractions (Fr.
B1-Fr.B4) and eight subfractions (Fr.C1-Fr.C8) from Fr.B 
dan Fr.C, respectively. Further purification of Fr.B1 and 
Fr.C7 by HPLC semipreparative reversed-phase column 
(Thermo Hypersil HS C18, 5 μm, 10 i.d. × 250 mm, Belle-
fonte, PA, USA) eluted by MeOHaq (respectively, 30% and 
50%) to give 1 (tR: 21 min; 3.2 mg), 2 (tR: 25 min; 3.5 mg) 
and 5 (tR: 13 min, 7.0 mg). The solid fermented products 
were grinded into a powder after cryodesiccation and 
than extracted four times with MeOH (equal volumes). 
The crude extracts were suspended with H2O and par-
titioned three times with EA, n-hexane, and n-butanol, 
respectively (equal volumes). The dried n-hexane extract 
(3.4 g) was subjected to gravity column chromatography 
(5 i.d. × 17 cm) with silica, eluted with n-hexane, EA, and 
MeOH by gradient system to yield 52 fractions, beofre 
combined into 12 fractions (fr.A-Fr.L) based on similar 
compositions of TLC analysis. Compound 6 (10.0  mg) 
was obtained from the recrystallization of fraction Fr.B at 
− 4 °C for 12 h.

Nigaurdiol (1)
colorless oil;  [α]25

D = −  1.2 (c 0.3, MeOH); IR (νmax, 
KBr): at 3334 and 1646  cm−1; HR-ESI–MS: [M + H]+ 
m/z 183.1381 (calcd. 183.1380 for C11H19O2); 1H and 13C 
NMR see Table 2.

Microglial culture
The murine BV-2 microglial cell line cultured followed 
the procedure of our previous reports (Hsiao et al. 2020). 
In summary, BV-2 cells were cultured with DMEM con-
taining Fetal Bovine Serum (FBS), streptomycin/penicil-
lin, Lglutamine and HEPES at 37 °C, humidified 5% CO2. 
Prior to the study, BV-2 cells were cultured in FBS media 
(5%), pretreated with carrier media or various concentra-
tions of compounds for 15 min, and eventually collected 
after 24 h of stimulation with LPS (150 ng/mL).

Cell viability assays
As in our previous report, cellular viability was assessed 
using MTT test where BV-2 cells, along with other 
compounds were treated for 24 h (Hsiao et al. 2020).

Detection of nitric oxide production
The level of nitric oxide (NO) metabolites from the 
production of activated BV-2 cells was measured with 
reference to the Griess method (Wang et al. 2018).
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Table 2  NMR data of compound 1 in CD3OD

Position δC δH (J in Hz)

1 16.8 1.67 (d, 3H, J = 6.2 Hz)

2 126.2 5.52 (dq, 1H, J = 16.4, 6.2 Hz)

3 130.7 5.43 (dd, 1H, J = 16.4, 7.0 Hz)

4 50.4 3.00 (dt, 1H, J = 7.0, 7.0 Hz)

5 137.6

6 129.2 5.94 (d, 1H, J = 11.0 Hz)

7 126.9 6.43 (ddq,, 1H, J = 14.8, 11.0, 1.2 Hz)

8 129.6 5.70 (dq, 1H, J = 14.8, 6.7 Hz)

9 17.0 1.77 (dd, 3H, J = 6.7, 1.2 Hz)

10a 58.1 4.18 (d, 1H, J = 12.0 Hz)

10b 4.14 (d, 1H, J = 12.0 Hz)

11a 64.4 3.63 (dd, 1H, J = 10.7, 7.0 Hz)

11b 3.55 (dd, 1H, J = 10.7, 7.0 Hz)
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