Alvarez-Pizarro JC, Gomes-Filho E, Lacerda CF, Alencar NLM, Prisco JT: Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew ( Anacardium occidentale L.) seedlings. Plant Growth Regul 2009, 59: 125–135. 10.1007/s10725-009-9395-7
Article
CAS
Google Scholar
Ashraf M, Foolad MR: Roles of glycinebetaine and proline in improving plant abiotic stress tolerance. Environ Exp Bot 2007, 59: 206–216. 10.1016/j.envexpbot.2005.12.006
Article
CAS
Google Scholar
Athar H, Ashraf M, Wahid A, Jamil A: Inducing salt tolerance in canola ( Brassica napus L.) by exogenous application of glycinebetaine and proline: response at the initial growth stages. Pak J Bot 2009, 41: 1311–1319.
CAS
Google Scholar
Banu M, Hoque M, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Murata N: Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 2009, 166: 146–156. 10.1016/j.jplph.2008.03.002
Article
CAS
PubMed
Google Scholar
Basu PS, Sharma A, Sukumaran NP: Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica 1998, 35: 13–19. 10.1023/A:1006801311105
Article
Google Scholar
Bates L, Waldrenn R, Teare I: Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39: 205–207. 10.1007/BF00018060
Article
CAS
Google Scholar
Belkheiri O, Mulas M: The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ Exp Bot 2011, 86: 17–28.
Article
Google Scholar
Bjorkman O, Demmig B: Photon yield of O
2
evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170: 489–504. 10.1007/BF00402983
Article
CAS
PubMed
Google Scholar
Chinnusamy V, Jagendorf A, Zhu J: Understanding and improving salt tolerance in plants. Crop Sci 2005, 45: 437–448. 10.2135/cropsci2005.0437
Article
CAS
Google Scholar
Dengiz O, Baskan O: Land quality assessment and sustainable land use in Salt Lake (Tuz Gölü) specially protected area. J Environ Monitor 2009, 148: 233–243.
Article
Google Scholar
Duran A, Martin E, Ozturk M, Cetin O, Dinc M, Ozdemir A: Morphological, karyological and ecological features of halophytic endemic Sphaerophysa kotschyana Boiss. (Fabaceae) in Turkey. Biogeosciences 2010, 3: 163–169.
Google Scholar
Ghoulam C, Foursy A, Fares K: Effects of salt stress on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 2002, 47: 39–50. 10.1016/S0098-8472(01)00109-5
Article
CAS
Google Scholar
Gorham J, Wyn Jones RG, McDonnell E: Some mechanisms of salt tolerance in crop plants. Plant Soil 1985, 89: 15–40. 10.1007/BF02182231
Article
CAS
Google Scholar
Grieve CM, Grattan SR: Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 1983, 70: 303–307. 10.1007/BF02374789
Article
CAS
Google Scholar
Hoagland DR, Arnon DI: The water culture method for growing plants without soil. Calif AES Bull 1950, 347: 1–32.
Google Scholar
Hunt R, Causton DR, Shipley B, Askew AP: A modern tool for classical plant growth analysis. Ann Bot 2002, 90: 485–488. 10.1093/aob/mcf214
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalaji HM, Govindje E, Bosa K, Koscielniak J, Zuk-Golaszewska K: Effects of salt stress on photosystem II efficiency and CO
2
assimilation of two Syrian barley landraces. Environ Exp Bot 2010, 73: 64–72.
Article
Google Scholar
Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M: Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manage 2003, 62: 37–66. 10.1016/S0378-3774(03)00005-2
Article
Google Scholar
Katschnig D, Broekman R, Rozema J: Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 2013, 92: 32–42.
Article
CAS
Google Scholar
Kavi Kishor PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Sreenath R, Reddy KJ, Theriappan P, Sreenivasulu N: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 2005, 88: 424–438.
Google Scholar
Kim JY, Lee SC, Jung KH, An G, Kim SR: Characterization of a cold responsive gene, OsPTR1, isolated from the screening of β-glucuronidase (GUS)-gene trapped rice. J Plant Biol 2004, 47: 133–141. 10.1007/BF03030644
Article
CAS
Google Scholar
Lacerda CF, Cambraia J, Oliva MA, Ruiz HA: Changes in growth and insolute concentrations in sorghum leaves and roots during salt stress recovery. Environ Exp Bot 2005, 54: 69–76. 10.1016/j.envexpbot.2004.06.004
Article
Google Scholar
Madhava Rao KV, Sresty TVS: Antioxidative parameters in the seedlings of pigeon pea ( Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 2000, 157: 113–128. 10.1016/S0168-9452(00)00273-9
Article
CAS
PubMed
Google Scholar
Martinez JP, Kinet JM, Bajji M, Lutts S: NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 2005, 419: 2421–2431.
Article
Google Scholar
Maxwell K, Johnson GN: Chlorophyll fluorescence: a practical guide. J Exp Bot 2000, 51: 659–668. 10.1093/jexbot/51.345.659
Article
CAS
PubMed
Google Scholar
Meloni DA, Oliva MA, Martinez CA, Cambraia J: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 2003, 49: 69–76. 10.1016/S0098-8472(02)00058-8
Article
CAS
Google Scholar
Mittler R: Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002, 7: 405–410. 10.1016/S1360-1385(02)02312-9
Article
CAS
PubMed
Google Scholar
Munns R, Tester M: Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008, 59: 651–681. 10.1146/annurev.arplant.59.032607.092911
Article
CAS
PubMed
Google Scholar
Noreen Z, Ashraf M, Akram NA: Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip ( Brassica rapa L.). J Agron Crop Sci 2010, 196: 273–285.
CAS
Google Scholar
Papageorgiou GC, Murata N: The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem complex. Photosynth Res 1995, 44: 243–252. 10.1007/BF00048597
Article
CAS
PubMed
Google Scholar
Sairam RK, Veerabhadra RK, Srivastava GC: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 2002, 163: 1037–1046. 10.1016/S0168-9452(02)00278-9
Article
CAS
Google Scholar
Sakamoto M, Murata N: The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 2002, 25: 163–171. 10.1046/j.0016-8025.2001.00790.x
Article
CAS
PubMed
Google Scholar
Santa-Cruz A, Martinez-Rodriguez MM, Perez-Alfocea F, Romero-Aranda R, Bolarin CM: The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci 2002, 162: 825–831. 10.1016/S0168-9452(02)00030-4
Article
CAS
Google Scholar
Smart RE, Bingham GE: Rapid estimates of relative water content. Plant Physiol 1974, 53: 258–260. 10.1104/pp.53.2.258
Article
CAS
PubMed
PubMed Central
Google Scholar
Sudhakar C, Lakshmi A, Giridarakumar S: Changes in the antioxidant enzyme activities in two high yielding genotypes of mulberry ( Morus alba L.) under NaCl salinity. Plant Sci 2001, 161: 613–619. 10.1016/S0168-9452(01)00450-2
Article
CAS
Google Scholar
Sun J, Chen SL, Dai SX, Wang RG, Li NY, Shen X, Zhou XY, Lu KF, Zheng SJ, Hu ZM, Zhang ZK, Song J, Xu Y: NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 2009, 149: 1141–1153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varshney KA, Gangwar LP, Goel N: Choline and betaine accumulation in Trifolium alexandrinum L. during salt stress. Egypt J Bot 1988, 31: 81–86.
CAS
Google Scholar
Verbruggen N, Hermans C: Proline accumulation in plants: a review. Amino Acids 2008, 35: 753–759. 10.1007/s00726-008-0061-6
Article
CAS
PubMed
Google Scholar