Abbas G, Saqib M, Akhtar J, Haq MAU (2015) Interactive effects of salinity and iron deficiency on different rice genotypes. J Plant Nut Soil Sci 178:306–311
CAS
Google Scholar
Abdel-Karim (1996) Studies on tolerance of some grape vine cultivars to stress. Ph.D. thesis Faculty of Agriculture Cairo University
Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Phys Biol 63:49–60
CAS
Google Scholar
Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131
CAS
PubMed
PubMed Central
Google Scholar
Aldesuquy HS (1991) Alleviation of salt stress on carbohydrate and nitrogen content of wheat flag leaf during filling by hormonal treatments. J Appl Sci 1:103–127
Google Scholar
Al-Khaffaf S, Adnan A, Al-Asadi NM (1990) Dynamics of root and shoot growth of barely under various levels of salinity and water stress. Argic Water Manage 18:63–75
Google Scholar
Alqudah A, Schnurbusch T (2014) Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Funct Plant Biol 41:424–436
Google Scholar
Amzallage GN, Lerner HR, Poljakoff Mayber A (1992) Interaction between mineral nutrients, cytokinen and gibberellin during growth of sorghum at high NaCl salinity. J Exp Bot 43:81–87
Google Scholar
Arisnabarreta S, Miralles DJ (2006) Yield responsiveness in two-and six-rowed barley grown in contrasting nitrogen environments. J Agric Crop Sci 192:178–185
Google Scholar
Aslam MP, Qureshi RH, Ahmed N (1993) A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil 150:99–107
Google Scholar
Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041
CAS
PubMed
PubMed Central
Google Scholar
Bacon MA (1999) The biochemical control of leaf expansion during drought. Plant Grow Reg 29:101–112
CAS
Google Scholar
Bacon MA, Wilkinson S, Davies WJ (1998) pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol 118:1507–1515
CAS
PubMed
PubMed Central
Google Scholar
Bagues M, Sarabi B, Ghashghaie J, Souli I, Nagaz K (2018) The validity of carbon isotope discrimination as a screening criterion for grain yield in two barley landraces under deficit irrigation with saline water in southern Tunisia. Plant Biotechnol 35:1–14
Google Scholar
Basalah MO (2010) Action of salinity on seed germination and seedling growth of Solanum melongena L. J Agric Res Kafer El-Sheikh Univ 36:64–73
Google Scholar
Ben Ghanem H, El Felah M (2011) Inscription d’une variété d’orge ‘kounouz’ dans le catalogue officiel Tunisien des obtentions végétales. Annales de l’INRAT 84:168
Google Scholar
Ben Youssef S, El Felah M, Chakroun M (2011) Inscription d’une variété d’orge ‘Lemsi’ dans le catalogue officiel Tunisien des obtentions végétales. Annales de l’INRAT 84:171
Google Scholar
Boussen H, Ben Salem M, Slama A, Mallek-Maalej E, Rezgui S (2016) Evaluation of drought tolerance indices in durum wheat recombinant inbred lines. https://www.researchgatenet/publication/268268090
Bressan RA, Singh NK, Handa AK, Kononowicz A, Has-egawa PM (1985) Stable and unstable tolerance to NaCl in cultured tobacco cells. In: Freeling M (ed) Plant genetics. Liss, New York, pp 755–769
Google Scholar
Cao WX, Wang Z, Dai TB (2000) Changes in levels of endogenous plant hormones during floret development in wheat genotypes of different spike sizes. J Integr Plant Biol 42:1026–1032
CAS
Google Scholar
Chaabane R, El Faleh M, Ben Salah H, Ben Naceur M, Abdelly C, Ramla D, Nada A, Saker M (2009) Molecular Characterization of Tunisian Barley (Hordeum vulgare L.) genotypes using microsatellites (SSRs) markers. Eur J Sci Res 36:6–15
Google Scholar
Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK (2012) Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci 32:3306–3320
CAS
PubMed
PubMed Central
Google Scholar
Collins JC, Kerrigan AP (1974) The effect of kinetin and abscisic acid on water and ion transport in isolated maize root. New Phytol 73:309–314
CAS
Google Scholar
Cramer GR, Krishnan K, Abrams SR (1998) Kinetics of maize leaf elongation. IV. Effects of (+)- and (−)-absisic acid. J Exp Bot 49:191–198
CAS
Google Scholar
Dai A (2011) Drought under global warming: a review. wiley interdisciplinary reviews. Clim Change 2:45–65
Google Scholar
Davies WJ, Zhang J (1991) Root signals and the development of plants growing in drying soil. Ann Rev Plant Physiol Mol Biol 42:55–76
CAS
Google Scholar
Dodd IC, Davies WJ (1996) The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone. Plant Cell Environ 19:1047–1056
CAS
Google Scholar
Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83:475–488
CAS
PubMed
Google Scholar
Dunlap JR, Binzel ML (1996) NaCl reduces indol-3-acetil acid levels in the roots of tomato plants independent of stress-induced abscissic acid. Plant Physiol 112:379–384
CAS
PubMed
PubMed Central
Google Scholar
Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481
CAS
Google Scholar
Freundl E, Steudle E, Hartung W (2000) Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis. Planta 210:222–231
CAS
PubMed
Google Scholar
Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59:3039–3050
CAS
PubMed
PubMed Central
Google Scholar
Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. UNSW, Sydney
Google Scholar
Grattan SR, Zeng LH, Shannon MC, Roberts SR (2002) Rice is more sensitive to salinity than previously thought. California-Agriculture 56:189–195
Google Scholar
Hanks RJ, Dundley LM, Cartee RL, Mace WR, Pomela E, Kidman RL, Wraith JM (1989) Use of saline waste water from electric power plants for irrigation. Report part 1. Soils irrigation water and crop yield studies. Res Rep Utah Agr Exp Statia 128:1–60
Google Scholar
Holloway RE, Alston AM (1992) The effects of salt and boron on growth of wheat. Aust J Agric Res 43:987–1001
CAS
Google Scholar
Hose E, Sauter A, Hartung W (2002) Abscisic acid in roots—biochemistry and physiology. In: Waisel Y, Eshel A, Kafkavi U (eds) Plant roots: the hidden half. Marcel Dekker Inc, New York, pp 435–448
Google Scholar
Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458
Google Scholar
Kausar F, Shahbaz M, Ashraf M (2013) Protective role of foliar applied nitric oxide in Triticum aestivum under saline stress. Turk J Bot 37:1155–1165
CAS
Google Scholar
Kernich GC, Halloran GM, Flood RG (1997) Variation in duration of pre-anthesis phases of development in barley (Hordeum vulgare). Aust J Agric Res 48:59–66
Google Scholar
Kirby EJM, Appleyard M (1987) Development and structure of the wheat plant. In: Lupton FGH (ed) Wheat Breeding. Chapman & Hall, London, pp 287–311
Google Scholar
Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214
CAS
PubMed
PubMed Central
Google Scholar
Kumar V, Kumar D, Singh SP, Chauchan CPS (1987) Response of bajra and wheat to different levels of nitrogen and phosphorus grown with saline water. Curr Agric 11:59–64
Google Scholar
Läuchli A, Epstein E (1990) Plant responses to saline and sodic conditions. In: Tanji KK (ed) Agricultural salinity assessment and management. ASCE manuals and reports on engineering practice, vol 17. ASCE, New York, pp 113–137
Google Scholar
Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60
CAS
PubMed
Google Scholar
Mansour MMF (1994) Changes in growth, osmotic potential and cell permeability of wheat cultivars under salt stress. Biol Plant 36:429–434
Google Scholar
Marcum K, Pessarakli M (2006) Salinity tolerance and salt gland excretion efficiency of bermuda grass turf cultivars. Crop Sci 46:2571
Google Scholar
Marschner P (1971) Mineral nutrition of higher plants. Academic Press, New York
Google Scholar
Maslenkova LT, Zanev YU, Popova LP (1993) Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids. J Plant Physiol 142:629–634
CAS
Google Scholar
Matsoukas IG (2014) Interplay between sugar and hormone signalling pathways modulate floral signal transduction. Front Genet 5:218. https://doi.org/10.3389/fgene.2014.00218
Article
CAS
PubMed
PubMed Central
Google Scholar
Miralles DJ, Richards RA, Slafer GA (2000) Duration of the stem elongation period influences the number of fertile florets in wheat and barley. Aust J Plant Physiol 27:931–940
Google Scholar
Mittal R, Dubey RS (1991) Influence of salinity on ribonuclease activity and status nucleic acids in rice seedling differing in salt tolerance. Plant Physiol Biochem 18:57–64
Google Scholar
Moral GLF, Miralles DJ, Slafer GA (2002) Initiation and appearance of vegetative and reproductive structures throughout barley development. In: Slafer JL, Molina R, Savin JL, Araus DA, Romagosa I (eds) Barley science: recent advances from molecular biology to agronomy of yield and quality food products press. The Harworth Press, New York, pp 243–268
Google Scholar
Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663
CAS
PubMed
Google Scholar
Naseer S, Nisar A, Ashraf M (2001) Effect of salt stress on germination and seedling growth of barley (Hordeum vulgare L.). Pak J Biol Sci 4:359–360
Google Scholar
Netondo GW, Onyango JC, Beck E (2004) Crop physiology and metabolism sorghum and salinity II—gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811
Google Scholar
Nicolas ME, Munns R, Samarakoon AB, Gifford RM (1994) Elevated CO2 improves the growth of wheat under salinity. Aust J Plant Physiol 20:349–360
Google Scholar
Nilsen ET, Orcutt DM (1996) The physiology of plants under stress: abiotic factors. Wiley, New York, p 689
Google Scholar
Okamoto M, Hanada A, Kamiya Y, Yamaguchi S, Nambara E (2009) Measurement of abscisic acid and gibberellins by gas chromatography/mass spectrometry. Methods Mol Biol 495:53–60. https://doi.org/10.1007/978-1-59745-477-3_5
Article
CAS
PubMed
Google Scholar
Owens S (2001) Salt of the earth. Genetic engineering may help to reclaim agricultural land lost due to salinization. EMBO Rep 2:877–879
CAS
PubMed
PubMed Central
Google Scholar
Pearce S, Vanzetti LS, Dubcovsky J (2013) Exogenous gibberellins induce wheat spike development under short days only in the presence of vernalization. Plant Physiol 163:1433–1445
CAS
PubMed
PubMed Central
Google Scholar
Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008
PubMed
PubMed Central
Google Scholar
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
Reggiani R, Aurisano N, Mattana M, Bertani A (1994) ABA induces 4-aminobutryrate accumulation in wheat seedlings. Phytochem 34:605–609
Google Scholar
Riggs TJ, Kirby EJM (1978) Developmental consequences of two-row and six-row ear type in spring barley: 1. Genetical analysis and comparison of mature plant characters. J Agric Sci 91:199–205
Google Scholar
Sakr MT, El-Metwally M (2009) Alleviation of the harmful effects of soil salt stress on growth, yield and endogenous antioxidant content of wheat plant by application of antioxidants. Pakistan J Biol Sci 12:624–630
CAS
Google Scholar
Sakr MT, El-Hadidy M, Abo El-Kheer AM, Farouk S (2004) Physiological studies of some osmo-regulator on kanulla. International conversation microbiology and biotechnology in Africa and Arab Reagan 27th to 29th, pp 295–321
Sakr MT, El-Emery ME, Fouda RA, Mowafy MA (2007) Role of some antioxidants in alleviating soil salinity stress. J Agric Sci Mansoura Univ 32:9751–9763
Google Scholar
Sarabi B, Bolandnazar S, Ghaderi N, Ghashghaie J (2017) Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiol Biochem 119:294–311
CAS
PubMed
Google Scholar
Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. In: Kermode RA (ed) Seed dormancy: methods and protocols. Humana Press, Totowa, pp 99–111
Google Scholar
Shahzad A, Ahmad M, Iqbal M, Ahmed I, Ali GM (2012) Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genet Mol Res 11:679–692
CAS
PubMed
Google Scholar
Shannon MC (1984) Breeding, selection and the genetics of salt tolerance. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 231–254
Google Scholar
Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625
CAS
PubMed
PubMed Central
Google Scholar
Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, Luo Y, Dion E, Fukui G, Kumazaki A, Nakano R, Rivero RM, Verbeck GF, Azad RK, Blumwal E, Mittler R (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE 11:e0147625
PubMed
PubMed Central
Google Scholar
Taghipour F, Salehi M (2008) The study of salt tolerance of Iranian barley (Hordeum vulgare L.) genotypes in seedling growth stages. Am–Eur J Agric Environ Sci 4:525–529
Google Scholar
Thompson DS, Wilkinson S, Bacon MA, Davies WJ (1997) Multiple signals and mechanisms that regulate leaf growth and stomatal behaviour during water deficit. Physiol Planta 100:303–313
CAS
Google Scholar
Torech FR, Thompson LM (1993) Soils and soil fertility. Oxford University Press, New York
Google Scholar
Waddington SR, Cartwright PM, Wall PC (1983) A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot 51:119–130
Google Scholar
Wang R, Yu Z, Pan Q, Xu Y (1999) Changes of endogenous plant hormone contents during grain development in wheat. Zuo Wu Xue Bao 25:227–231
Google Scholar
Wang Z, Cao W, Dai T, Zhou Q (2000) Effects of exogenous hormones on floret development and grain set in wheat. Plant Growth Regul 35:222–231
Google Scholar
Whingwiri EE, Stern WR (1982) Floret survival in wheat: significance of the time of floret initiation relative to terminal spikelet formation. J Agric Sci (Camb) 98(25):268
Google Scholar
Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525
CAS
PubMed
Google Scholar
Willenborg CJ, Gulden RH, Johnson EN, Shirtliffe SJ (2004) Germination characteristics of polymer-coated canola (Brassica napus L.) seeds subjected to moisture stress at different temperatures. AgroJournal 96:786–791
Google Scholar
Wu Y, Kuzma J, Maréchal E, Graeff R, Lee HC, Foster R, Chua NH (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 19:2126–2130
Google Scholar
Youssef HM, Hansson M (2019) Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Rep 1:1. https://doi.org/10.1007/s00299-019-02430-0
Article
CAS
Google Scholar
Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G et al (2017) VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet 49:157–161
CAS
PubMed
Google Scholar
Zeng L, Shannon MC (2000) Effects of salinity on grain yield and yield components of rice at different seeding densities. Agron J 92:418–423
Google Scholar
Zhao GQ, Ma BL, Ren CZ (2007) Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci 47:123–131
CAS
Google Scholar
Zhu B, Su J, Chong M, Verma DPS, Fare Y, Wu R (1998) Over expression of Δ-pyrolline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139:41–48
CAS
Google Scholar