Angeles ER, Khush G, Heinrichs E (1981) New genes for resistance to whitebacked planthopper in rice. Crop Sci 21:47–50
Article
Google Scholar
Bonaventure G (2012) Perception of insect feeding by plants. Plant Biol 14:872–880
Article
CAS
PubMed
Google Scholar
Chandler RF (1992) An adventure in applied science: a history of the International Rice Research Institute. International Rice Research Institute, Los Baños
Google Scholar
Chang C-W, Wang Y-H, Tung C-W (2017) Genome-wide single nucleotide polymorphism discovery and the construction of a high-density genetic map for melon (Cucumis melo L.) using genotyping-by-sequencing. Front Plant Sci 8:125. https://doi.org/10.3389/fpls.2017.00125
Article
PubMed
PubMed Central
Google Scholar
Deen R, Ramesh K, Padmavathi G, Viraktamath BC, Ram T (2017) Mapping of brown planthopper [Nilaparvata lugens (Stål)] resistance gene (bph5) in rice (Oryza sativa L.). Euphytica 213:35. https://doi.org/10.1007/s10681-016-1786-z
Article
CAS
Google Scholar
Diezel C, von Dahl CC, Gaquerel E, Baldwin IT (2009) Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150:1576–1586
Article
CAS
PubMed
PubMed Central
Google Scholar
Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci 106:22163–22168
Article
CAS
PubMed
PubMed Central
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. https://doi.org/10.1371/journal.pone.0019379
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrar RR, Barbour JD, Kennedy GG (1989) Quantifying food consumption and growth in insects. Ann Entomol Soc Am 82:593–598. https://doi.org/10.1093/aesa/82.5.593
Article
Google Scholar
Guo H-M, Li H-C, Zhou S-R, Xue H-W, Miao X-X (2014) Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect. Mol Plant 7:1683–1692
Article
CAS
PubMed
Google Scholar
Guo T-W, Liao C-T, Chuang W-P (2019) Defensive responses of rice cultivars resistant to Cnaphalocrocis medinalis (Lepidoptera: Crambidae). Arthropod-Plant Interactions 2019:1–10
Google Scholar
Han Y, Lei W, Wen L, Hou M (2015) Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PLoS ONE 10:e0120557
Article
PubMed
PubMed Central
Google Scholar
Huang C, Chang W, Chang T (1972) Ponlai varieties and Taichung native 1. In: Symposium on Rice Breeding, International Rice Research Institute. Los Baños, Philippine, 6-10 September 1971
IRRI (2002) Standard evaluation system for rice. IRRI, Manila
Google Scholar
Jing S, Zhang L, Ma Y, Liu B, Zhao Y, Yu H, Zhou X, Qin R, Zhu L, He G (2014) Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance. PLoS ONE 9:e98911
Article
PubMed
PubMed Central
Google Scholar
Kumar PN, Sujatha K, Laha G, Rao KS, Mishra B, Viraktamath B, Hari Y, Reddy C, Balachandran S, Ram T (2012) Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae. Phytopathology 102:222–228
Article
CAS
PubMed
Google Scholar
Lee K, Rasabandith S, Angeles E, Khush G (2003) Inheritance of resistance to bacterial blight in 21 cultivars of rice. Phytopathology 93:147–152
Article
CAS
PubMed
Google Scholar
Liao C-T, Chen C-L (2017) Oviposition preference and larval performance of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) on rice genotypes. J Econ Entomol 110:1291–1297
Article
PubMed
Google Scholar
Lin M-H, Cheng S-H (2012) Studies on variation of Koshihikari population in Taiwan. Bull Taoyuan Dist Agric Res Exten Stat 71:1–16
Google Scholar
Liu X, Li J, Xu L, Wang Q, Lou Y (2018) Expressing OsMPK4 impairs plant growth but enhances the resistance of rice to the striped stem borer Chilo suppressalis. Int J Mol Sci 19:1182
Article
PubMed Central
Google Scholar
Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740
Article
CAS
PubMed
PubMed Central
Google Scholar
Painter RH (1951) Insect resistance in crop plants. The Macmillan Company, New York
Book
Google Scholar
Pathak M, Cheng C, Fortuno M (1969) Resistance to Nephotettix impicticeps and Nilaparvata lugens in varieties of rice. Nature 223:502–504
Article
Google Scholar
Rawat N, Himabindu K, Neeraja CN, Nair S, Bentur JS (2013) Suppressive subtraction hybridization reveals that rice gall midge attack elicits plant-pathogen-like responses in rice. Plant Physiol Biochem 63:122–130
Article
CAS
PubMed
Google Scholar
Shono Y, Hirano M (1989) Improved mass-rearing of the rice leaffolder, Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) using corn seedlings. Appl Entomol Zool 24:258–263
Article
Google Scholar
Shukla V, Anjaneyulu A (1980) Evaluation of systemic insecticides for control of rice tungro. Plant Dis 64:79–792
Google Scholar
Tan G, Weng Q, Ren X, Huang Z, Zhu L, He G (2004) Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 92:212
Article
CAS
PubMed
Google Scholar
Team RC (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Tseng H-Y, Lin D-G, Hsieh H-Y, Tseng Y-J, Tseng W-B, Chen C-W, Wang C-S (2015) Genetic analysis and molecular mapping of QTLs associated with resistance to bacterial blight in a rice mutant, SA0423. Euphytica 205:231–241
Article
CAS
Google Scholar
Velusamy R, Heinrichs E, Medrano F (1986) Greenhouse techniques to identify field resistance to the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), in rice cultivars. Crop protection 5:328–333
Article
Google Scholar
Vu Q, Quintana R, Fujita D, Bernal CC, Yasui H, Medina CD, Horgan FG (2014) Responses and adaptation by Nephotettix virescens to monogenic and pyramided rice lines with Grh-resistance genes. Entomol Exp Appl 150:179–190
Article
CAS
Google Scholar
Waldbauer GP (1968) The consumption and utilization of food by insects. Adv Insect Physiol 5:229–288
Article
Google Scholar
Wu CF, Khush G (1985) A new dominant gene for resistance to whitebacked planthopper in rice. Crop Sci 25:505–509
Article
Google Scholar
Yang Y, Xu J, Leng Y, Xiong G, Hu J, Zhang G, Huang L, Wang L, Guo L, Li J (2014) Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to whitebacked planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.). BMC Plant Biol 14:145
Article
PubMed
PubMed Central
Google Scholar
Ye M, Luo SM, Xie JF, Li YF, Xu T, Liu Y, Song YY, Zhu-Salzman K, Zeng RS (2012) Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS ONE 7:e36214
Article
CAS
PubMed
PubMed Central
Google Scholar
Yugander A, Sundaram RM, Singh K, Ladhalakshmi D, Rao LVS, Madhav MS, Badri J, Prasad MS, Laha GS (2018) Incorporation of the novel bacterial blight resistance gene Xa38 into the genetic background of elite rice variety Improved Samba Mahsuri. PLoS ONE 13:e0198260
Article
PubMed
PubMed Central
Google Scholar