Ahmad I, Mehmood Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 62:183–193. https://doi.org/10.1016/S0378-8741(98)00055-5
Article
CAS
PubMed
Google Scholar
Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693. https://doi.org/10.1093/nar/25.22.4692
Article
CAS
PubMed
PubMed Central
Google Scholar
Andhale NB, Ade AB (2013) In vivo enhancement of Plumbagin in Plumbago zeylanica L. LAP Lambert Academic Publishing, Germany
Google Scholar
Annonymous (2010) Repeatable delivering linear, and accurate injection volumes for UPLC and HPLC Waters Corporation (https://www.waters.com/webassets/cms/library/docs/720003445en.pdf). Accessed 24 Jan 2019
Aziz MH, Dreckschmidt NE, Verma AK (2008) Plumbagin, a medicinal plant derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res 68:9024–9032. https://doi.org/10.1158/0008-5472.CAN-08-2494
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernardi-Wenzel J, Garcia A, Celso Filho JR, Prioli AJ, Pamphile JA (2010) Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol Res 43:375–384. https://doi.org/10.4067/S0716-97602010000400001
Article
PubMed
Google Scholar
Cao YY, Yu J, Liu TT, Yang KX, Yang LY, Chen Q, Shi F, Hao JJ, Cai Y, Wang MR, Lu WH (2018) Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death Dis 9:1–13. https://doi.org/10.1038/s41419-017-0068-6
Article
CAS
Google Scholar
Chen J, Qiu X, Wang R, Duan L, Chen S, Luo J, Kong L (2009) Inhibition of human gastric carcinoma cell growth in vitro and in vivo by cladosporol isolated from the paclitaxel-producing strain Alternaria alternata var. monosporus. Biol Pharm Bull 32:2072–2074. https://doi.org/10.1248/bpb.32.2072
Article
CAS
PubMed
Google Scholar
Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AK, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7:103–112. https://doi.org/10.4161/psb.7.1.18472
Article
CAS
PubMed
PubMed Central
Google Scholar
De U, Son JY, Jeon Y, Ha SY, Park YJ, Yoon S, Ha KT, Choi WS, Lee BM, Kim IS, Kwak JH (2019) Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Food Chem Toxicol 123:492–500. https://doi.org/10.1016/j.fct.2018.11.040
Article
CAS
PubMed
Google Scholar
Dohare B, Jain B, Khare S, Jain K (2015) Comparative estimation of plumbagin in aerial and root part of Plumbago zeylanica using UV-Visible Spectrophotometric. UK J Pharm Biosci 3:9–14. https://doi.org/10.20510/ukjpb/3/i3/89384
Article
CAS
Google Scholar
Dorni AIC, Vidyalakshmi KS, Vasanthi RH, Rajamanickam GV, Dubey GP (2007) HPTLC method for the quantification of plumbagin in three Plumbago species. Res J Phytochem 1:46–51. https://doi.org/10.3923/rjphyto.2007.46.51
Article
CAS
Google Scholar
Eram D, Arthikala M-K, Melappa G, Santoyo G (2018) Alternaria species: endophytic fungi as alternative sources of bioactive compounds. Ital J Mycol 47:40–54. https://doi.org/10.6092/issn.2531-7342/8468
Article
Google Scholar
Faisal MP, Prasad L, Icar-Iisr RS (2016) A potential source of methyl-eugenol from secondary metabolite of Rhizopus oryzae 6975. Int J Appl Biol Pharm Technol 7:187–192. https://doi.org/10.21276/ijabpt
Article
CAS
Google Scholar
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Article
PubMed
Google Scholar
Gallardo E, Barroso M, Queiroz JA (2009) LC-MS: a powerful tool in workplace drug testing. Drug Test Anal 1:109–115. https://doi.org/10.1002/dta.26
Article
CAS
PubMed
Google Scholar
Gunaherath GMKB, Gunatilaka AAL, Sultanbawa MUS, Balasubramaniam S (1983) 1,2 (3)-Tetrahydro-3,3′-biplumbagin: a naphthalenone and other constituents from Plumbago zeylanica. Phytochemistry 22:1245–1247. https://doi.org/10.1016/0031-9422(83)80232-5
Article
CAS
Google Scholar
Guo L, Xu L, Zheng W-H, Hyde KD (2004) Genetic variation of Alternaria alternata, an endophytic fungus isolated from Pinus tabulaeformis as determined by random amplified microsatelites (RAMS). Fungal Divers 16:53–65
Google Scholar
Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 299–319
Chapter
Google Scholar
Hsieh Y-J, Lin L-C, Tsai T-H (2005) Determination and identification of plumbagin from the roots of Plumbago zeylanica L. by liquid chromatography with tandem mass spectrometry. J Chromatogr A 1083:141–145. https://doi.org/10.1016/j.chroma.2005.06.030
Article
CAS
PubMed
Google Scholar
Ibrahim AS, Kontoyiannis DP (2013) Update on mucormycosis pathogenesis. Curr Opin Infect Dis 26:508. https://doi.org/10.1097/QCO.0000000000000008
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP (2012) Pathogenesis of mucormycosis. Clin Infect Dis 54(1):S16–S22. https://doi.org/10.1093/cid/cir865
Article
CAS
PubMed
PubMed Central
Google Scholar
Jain P, Sharma HP, Basri F, Baraik B, Kumari S, Pathak C (2014) Pharmacological profiles of ethno-medicinal plant: plumbago zeylanica L.—a review. Int J Pharm Sci Rev Res 24:157–163
Google Scholar
Jaisi A, Panichayupakaranant P (2016) Increased production of plumbagin in Plumbago indica root cultures by biotic and abiotic elicitors. Biotechnol Lett 38:351–355. https://doi.org/10.1007/s10529-015-1969-z
Article
CAS
PubMed
Google Scholar
Jaisi A, Sakunphueak A, Panichayupakaranant P (2013) Increased production of plumbagin in Plumbago indica root cultures by gamma ray irradiation. Pharm Biol 51:1047–1051. https://doi.org/10.3109/13880209.2013.775163
Article
CAS
PubMed
Google Scholar
Jalalpure SS (2011) A comprehensive review on Plumbago zeylanica Linn. Afr J Pharm Pharmacol 5:2738–2747. https://doi.org/10.5897/AJPP11.739
Article
CAS
Google Scholar
Knoth JL, Kim S-H, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609. https://doi.org/10.1111/nph.12536
Article
CAS
PubMed
Google Scholar
Komaraiah P, Amrutha RN, Kishor PBK, Ramakrishna SV (2002) Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L. Enzyme Microb Technol 31:634–639. https://doi.org/10.1016/S0141-0229(02)00159-X
Article
CAS
Google Scholar
Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162. https://doi.org/10.1021/np070669k
Article
CAS
PubMed
Google Scholar
Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030. https://doi.org/10.1111/j.1365-2672.2009.04285.x
Article
CAS
PubMed
Google Scholar
Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798. https://doi.org/10.1016/j.chembiol.2012.06.004
Article
CAS
PubMed
Google Scholar
Liu Y, Cai Y, He C, Chen M, Li H (2017) Anticancer properties and pharmaceutical applications of plumbagin: a review. Am J Chin Med 45:423–441. https://doi.org/10.1142/S0192415X17500264
Article
CAS
PubMed
Google Scholar
Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606. https://doi.org/10.1080/0735-260291044377
Article
Google Scholar
Maggini V, De Leo M, Mengoni A, Gallo ER, Miceli E, Reidel RV, Biffi S, Pistelli L, Fani R, Firenzuoli F, Bogani P (2017) Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model. Sci Rep 7:16924. https://doi.org/10.1038/s41598-017-17110-w
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin KP, Sabovljevic A, Madassery J (2011) High-frequency transgenic plant regeneration and plumbagin production through methyl jasmonate elicitation from hairy roots of Plumbago indica L. J Crop Sci Biotechnol 14(3):205–212. https://doi.org/10.1007/s12892-010-0123-7
Article
Google Scholar
Ming Y, Wang J, Yang J, Liu W (2011) Chemical Constituents of Plumbago zeylanica L. Adv Mater Res 308–310:1662–1664. https://doi.org/10.4028/www.scientific.net/AMR.308-310.1662
Article
CAS
Google Scholar
Mukherjee D (2017) Medicinal and aromatic plants: wealth of India at high and low altitudes. Adv Plant Physiol 17:425
Google Scholar
Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH (2012) Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev 32:1131–1158. https://doi.org/10.1002/med.20235
Article
CAS
PubMed
Google Scholar
Paiva SR, Figueiredo MR, Aragão TV, Kaplan MA (2003) Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem Inst Oswaldo Cruz 98:959–961. https://doi.org/10.1590/s0074-02762003000700017
Article
PubMed
Google Scholar
Palombo EA (2011) Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. Evid Based Complement Alternat Med 2011:1–15. https://doi.org/10.1093/ecam/nep067
Article
Google Scholar
Pandey R, Shukla S, Saraf S, Saraf S (2013) Standardization and validated high-performance thin-layer chromatographic fingerprint method for quantitative determination of plumbagin in a traditional Indian formulation. J Planar Chromatogr Mod 26:440–444. https://doi.org/10.1556/JPC.26.2013.5.9
Article
CAS
Google Scholar
Pandey SS, Singh S, Babu CSV, Shanker K, Srivastava NK, Shukla AK, Kalra A (2016) Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6:26583. https://doi.org/10.1038/srep26583
Article
CAS
PubMed
PubMed Central
Google Scholar
Panichayupakaranant P, Tewtrakul S (2002) Plumbagin production by root cultures of Plumbago rosea. Electron J Biotechnol 5:11–12
Article
Google Scholar
Pant M, Lal A, Rana S, Rani A (2012) Plumbago zeylanica L.: a mini review. Int J Pharm Appl 3:399–405
Google Scholar
Patwardhan B, Vaidya ADB, Chorghade M (2004) Ayurveda and natural products drug discovery. Curr Sci 25:789–799
Google Scholar
Pusztahelyi T, Holb IJ, Pocsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573. https://doi.org/10.3389/fpls.2015.00573
Article
PubMed
PubMed Central
Google Scholar
Pawar RK, Sharma S, Singh KC, Sharma RK (2010) HPTLC method for the determination of Plumbagin from Plumbago zeylanica Linn. (root). Int J Pharm Pharm Sci 2:219–23
CAS
Google Scholar
Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114. https://doi.org/10.1093/jxb/erm342
Article
CAS
PubMed
Google Scholar
Roy A, Bharadvaja N (2018) Biotechnological approaches for the production of pharmaceutically important compound: plumbagin. Curr Pharm Biotechnol 19:372–381. https://doi.org/10.2174/1389201019666180629143842
Article
CAS
PubMed
Google Scholar
Roy A, Bharadvaja N (2019) Establishment of root suspension culture of Plumbago zeylanica and enhanced production of plumbagin. Ind Crops Prod 137:419–427. https://doi.org/10.1016/j.indcrop.2019.05.007
Article
CAS
Google Scholar
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
Article
CAS
PubMed
Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Article
CAS
PubMed
Google Scholar
Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. https://doi.org/10.1017/S095375620500273X
Article
PubMed
Google Scholar
Sinha S, Pal K, Elkhanany A, Dutta S, Cao Y, Mondal G, Iyer S, Somasundaram V, Couch FJ, Shridhar V, Bhattacharya R (2013) Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int J Cancer 132:1201–1212. https://doi.org/10.1002/ijc.27724
Article
CAS
PubMed
Google Scholar
Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74:2497–2504. https://doi.org/10.1021/np200303v
Article
CAS
PubMed
Google Scholar
Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035. https://doi.org/10.1073/pnas.0404206101
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197
Article
CAS
PubMed
PubMed Central
Google Scholar
Tilak JC, Adhikari S, Devasagayam TPA (2004) Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Rep 9:219–227. https://doi.org/10.1179/135100004225005976
Article
CAS
PubMed
Google Scholar
Tripathi SK, Panda M, Biswal BK (2019) Emerging role of plumbagin: cytotoxic potential and pharmaceutical relevance towards cancer therapy. Food Chem Toxicol 125:566–582. https://doi.org/10.1016/j.fct.2019.01.018
Article
CAS
PubMed
Google Scholar
Unnikrishnan KP, Raja SS, Balachandran I (2008) A reverse phase HPLC-UV and HPTLC methods for determination of plumbagin in Plumbago indica and Plumbago zeylanica. Indian J Pharm Sci 70:844. https://doi.org/10.4103/0250-474X.49142
Article
CAS
PubMed
PubMed Central
Google Scholar
Vasundhara M, Kumar A, Reddy MS (2016) Molecular approaches to screen bioactive compounds from endophytic fungi. Front Microbiol 7:1774. https://doi.org/10.3389/fmicb.2016.01774
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkateswarulu N, Shameer S, Bramhachari PV, Basha SKT, Nagaraju C, Vijaya T (2018) Isolation and characterization of plumbagin (5-hydroxyl-2-methylnaphthalene-1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants. Biotechnol Rep 20:e00282. https://doi.org/10.1016/j.btre.2018.e00282
Article
CAS
Google Scholar
Vijver LM, Looter AP (1971) The constituents of the roots of Plumbago auriculata and P. zeylanica responsible for antimicrobial activity. Plant Med 20:8–13. https://doi.org/10.1055/s-0028-1099658
Article
Google Scholar
Vishnukanta RAC, Rana AC (2010) Evaluation of anticonvulsant activity of Plumbago zeylanica Linn leaf extract. Asian J Pharm Clin Res 3:76–78
Google Scholar
White TJ, Bruns T, Lee S, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp 315–322
Google Scholar
Zhang QR, Mei Z-N, Yang GZ, Xiao YX (2007) Chemical constituents from aerial parts of Plumbago zeylanica. J Chin Med Mater 30:558–560
CAS
Google Scholar