Abeli T, Gentili R, Mondoni A, Orsenigo S, Rossi G (2014) Effects of marginality on plant population performance. J Biogeogr 41(2):239–249. https://doi.org/10.1111/jbi.12215
Article
Google Scholar
Bagheri M, Heidari B, Dadkhodaie A, Heidari Z, Daneshnia N, Richards CM (2022) Analysis of genetic diversity in a collection of Plantago species: application of ISSR markers. J Crop Sci Biotechnol 25(1):1–8. https://doi.org/10.1007/s12892-021-00107-3
Article
CAS
Google Scholar
Becker T (2005) Auswirkungen langzeitiger Fragmentierung auf Populationen-am Beispiel der reliktischen Steppenrasenart-Astragalus exscapus L.(Fabaceae). Hercynia 38(S88):112
Google Scholar
Borchsenius F (2009) FastGap 1.2. Department of Biosciences, Aarhus University, Denmark. Published online at http://www.aubot.dk/FastGap_home.htm. Accessed 15 Jul 2022.
Brown ADH, Briggs JD (1991) Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 99–122
Google Scholar
Brown ADH, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Guarino L, Ramantha Rao VR (eds) Collecting plant genetic diversity: technical guidelines. CAB International Wallington, UK, pp 75–111
Google Scholar
Brütting C, Hensen I, Wesche K (2012) Ex situ cultivation affects genetic structure and diversity in arable plants. Plant Biol 15(3):505–513. https://doi.org/10.1111/j.1438-8677.2012.00655.x
Article
CAS
Google Scholar
Chacón-Vargas K, García-Merchán VH, Sanín MJ (2019) From keystone species to conservation: conservation genetics of wax palm Ceroxylon quindiuense in the largest wild populations of Colombia and selected neighbouring ex situ plant collections. Biodivers Conserv 29:283–302. https://doi.org/10.1007/s10531-019-01882-w
Article
Google Scholar
Chen XB, Tian Q, Zhang QX (2013) Genetic diversity and ex situ conservation of Sinocalycanthus chinensis. Acta Hortic 977:253–257. https://doi.org/10.17660/ActaHortic.2013.977.29
Article
Google Scholar
Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci 101(51):17741–17746. https://doi.org/10.1073/pnas.0408302101
Article
CAS
Google Scholar
Christe C, Kozlowski G, Frey D, Fazan L, Bétrisey S, Pirintsos S, Gratzfeld J, Naciri Y (2014) Do living ex situ collections capture the genetic variation of wild populations? A molecular analysis of two relict tree species, Zelkova abelica and Zelkova carpinifolia. Biodivers Conserv 23(12):2945–2959. https://doi.org/10.1007/s10531-014-0756-9
Article
Google Scholar
Clement M, Snell Q, Walker P, Posada D, Crandall K (2002) TCS: estimating gene genealogies. In: Parallel and Distributed Processing Symposium, International, vol. 3. IEEE Computer Society, pp 0184–0184
D’Agostino RB, Belanger A, D’Agostino RB Jr (1990) A suggestion for using powerful and informative tests of normality. Am Stat 44(4):316–321. https://doi.org/10.1080/00031305.1990.10475751
Article
Google Scholar
De Vita A, Bernardo L, Gargano D, Palermo AM, Mussachio A (2009) Investigating genetic diversity and habitat dynamics in Plantago brutia (Plantaginaceae), implications for the management of narrow endemics in Mediterranean mountain pastures. Plant Biol 11:821–828
Article
Google Scholar
Dhar MK, Friebe B, Kaul S, Gill BS (2006) Characterization and physical mapping of ribosomal RNA gene families in Plantago. Ann Bot 97(4):541–548. https://doi.org/10.1093/aob/mcl017
Article
CAS
Google Scholar
Dhar MK, Kour G, Kaul S (2017) B chromosome in Plantago lagopus Linnaeus, 1753 shows preferential transmission and accumulation through unusual processes. Comp Cytogenet 11(2):375
Article
Google Scholar
Durka W, Nossol C, Welk E, Ruprecht E, Wagner V, Wesche K, Hensen I (2013) Extreme genetic depauperation and differentiation of both populations and species in Eurasian feather grasses (Stipa). Plant Syst and Evol 299(1):259–269
Article
Google Scholar
Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. https://doi.org/10.1007/s12686-011-9548-7
Article
Google Scholar
Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17(5):1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x
Article
CAS
Google Scholar
Ensslin A, Godefroid S (2019) How the cultivation of wild plants in botanic gardens can change their genetic and phenotypic status and what this means for their conservation value. Sibbaldia J Bot Gard Hortic 17:51–69. https://doi.org/10.23823/Sibbaldia/2019.267
Article
Google Scholar
Ensslin A, Sandner TM, Matthies SD (2011) Consequences of ex situ cultivation of plants: genetic diversity, fitness and adaptation of the monocarpic Cynoglossum officinale L. in botanic gardens. Biol Conserv 144(1):272–278. https://doi.org/10.1016/j.biocon.2010.09.001
Article
Google Scholar
Etisham-Ul-Haq M, Allnutt TR, Smith-Ramiarez C, Gardener MF, Armesto JJ, Newton AC (2001) Patterns of genetic variation in in and ex situ populations of the threatened Chilean vine Berberidopsis corallina, detected using RAPD Markers. Ann of Bot 87(6):813–821. https://doi.org/10.1006/anbo.2001.1420
Article
CAS
Google Scholar
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Article
CAS
Google Scholar
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587
Article
CAS
Google Scholar
Ferreira V, Gonçalves S, Matos M, Correia S, Martins N, Romano A, Pinto-Carnide O (2013) Genetic diversity of two endemic and endangered Plantago species. Biochem Syst Ecol 51:37–44. https://doi.org/10.1016/j.bse.2013.08.003
Article
CAS
Google Scholar
Francis RM (2017) Pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17(1):27–32. https://doi.org/10.1111/1755-0998.12509
Article
CAS
Google Scholar
Frankham R (2003) Genetics and conservation biology. C R Biol 326:22–29. https://doi.org/10.1016/S1631-0691(03)00023-4
Article
Google Scholar
Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucl Acids Res 8(21):4851–4865. https://doi.org/10.1093/nar/8.21.4851
Article
CAS
Google Scholar
González-López O, Polanco C, György Z, Pedryc A, Casquero PA (2014) Genetic variation of the endangered Gentiana lutea L. var. aurantiaca (Gentianaceae) in populations from the Northwest Iberian Peninsula. Int J of Mol Sci 15(6):10052–10066. https://doi.org/10.3390/ijms150610052
Article
Google Scholar
Grigoriev Y (1958) Plantago L. In: Shishkin B (ed) Flora URSS, vol 23. Editio Acad Sci URSS, Moscow-Leningrad, pp 133–163 (in Russian)
Google Scholar
Guimarães RA, Corrêa MKM, Chaves LJ, Naves RV, de Campos Telles MP, Soares TN (2019) Mating system and pollen dispersal in Dipteryx alata Vogel (Leguminosae): comparing in situ and ex situ conditions. Tree Genet Genomes. https://doi.org/10.1007/s11295-019-1337-6
Article
Google Scholar
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
CAS
Google Scholar
Hammer K (1984) Das domestikationssyndrom. Die Kulturpflanze 32(1):11–34. https://doi.org/10.1007/BF02098682
Article
Google Scholar
Hamrick JL, Schnabel A (1985) Understanding the genetic structure of plant populations: some old problems and a new approach. In: Gregorius HR (eds) Population Genetics in Forestry. Lecture Notes in Biomathematics, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48125-3_4
Hassemer G, Bruun-Lund S, Shipunov AB, Briggs BG, Meudt HM, Rønsted N (2019) The application of high-throughput sequencing for taxonomy: the case of Plantago subg. Plantago (Plantaginaceae). Mol Phylogen and Evol 138:156–173. https://doi.org/10.1016/j.ympev.2019.05.013
Article
Google Scholar
Hensen I, Kilian C, Wagner V, Durka W, Pusch J, Wesche K (2010) Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. in central Europe. Plant Biol 12(3):526–536
Article
CAS
Google Scholar
Heywood VH (2014) An overview of in situ conservation of plant species in the Mediterranean. Flora Mediterr 24:5–24. https://doi.org/10.7320/FlMedit24.005
Article
Google Scholar
Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x
Article
Google Scholar
Iwanycki Ahlstrand N, Verstraete B, Hassemer G, Dunbar-Co S, Hoggard R, Meudt HM, Rønsted N (2019) Ancestral range reconstruction of remote oceanic island species of Plantago (Plantaginaceae) reveals differing scales and modes of dispersal. J of Biogeogr 46(4):706–722. https://doi.org/10.1111/jbi.13525
Article
CAS
Google Scholar
Jensen SR, Olsen CE, Rahn K, Rasmussen JH (1996) Iridoid glucosides in Plantago alpina and P. Altissima. Phytochemistry 42(6);1633–1636. https://doi.org/10.1016/0031-9422(96)00158-6
Article
CAS
Google Scholar
Koelewijn HP (2004) Rapid change in relative growth rate between the vegetative and reproductive stage of the life cycle in Plantago coronopus. New Phyt 163(1):67–76
Article
Google Scholar
Kovács Z, Barabás S, Höhn M (2018) Germination study of the giant plantain (Plantago maxima Juss. ex Jacq.). Botanikai Közlemények 105(2):243–252. https://doi.org/10.17716/BotKozlem.2018.105.2.243
Article
Google Scholar
Kropf M, Bardy K, Höhn M, Plenk K (2020) Phylogeographical structure and genetic diversity of Adonis vernalis L. (Ranunculaceae) across and beyond the Pannonian region. Flora 262:151497. https://doi.org/10.1016/j.flora.2019.151497
Article
Google Scholar
Lauterbach D, Burkart M, Gemeinholzer B (2012) Rapid genetic differentiation between ex situ and their in situ source populations: an example of the endangered Silene otites (Caryophyllaceae). Bot J Linn Soc 168(1):64–75. https://doi.org/10.1111/j.1095-8339.2011.01185.x
Article
Google Scholar
Lazar Jr I, Lazar I (2010) GelAnalyzer 19.1. www.gelanalyzer.com. Accessed 12 Mar 2022.
Leigh JW, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecol and Evol 6(9):1110–1116. https://doi.org/10.1111/2041-210x.12410
Article
Google Scholar
Li Q, Xu Z, He T (2002) Ex situ genetic conservation of endangered Vatica guangxiensis (Dipterocarpaceae) in China. Biol Con 106(2):151–156. https://doi.org/10.1016/S0006-3207(01)00240-3
Article
Google Scholar
Li Z, Wei L, Hoggard RK (2011) Plantaginaceae. In: Wu Z, Raven PH, Hong D. (Eds.), Flora of China, vol. 19, Science Press, Beijing, and Missouri Botanical Garden, St. Louis, pp 495–503.
Li BJ, Wang JY, Liu ZJ, Zhuang XY, Huang JX (2018) Genetic diversity and ex situ conservation of Loropetalum subcordatum, an endangered species endemic to China. BMC Genet 19:12. https://doi.org/10.1186/s12863-018-0599-6
Article
Google Scholar
Magulaev AY (1982) The number of chromosomes of the species of Asteraceae, Caryophyllaceae and Plantaginaceae of the North Caucasus. Biol Nauki (Moscow) 11(227):74–79
Google Scholar
Maunder M, Byers O (2005) The IUCN technical guidelines on the management of ex situ populations for conservation: reflecting major changes in the application of ex situ conservation. Oryx 39(1):95–98
Article
Google Scholar
Miao YC, Su JR, Zhang ZJ, Lang XD, Liu WD, Li SF (2015) Microsatellite markers indicate genetic differences between cultivated and natural populations of endangered Taxus yunnanensis. Bot J Linn Soc 177(3):450–461. https://doi.org/10.1111/boj.12249
Article
Google Scholar
Mlinarec J, Papes DA, Besendorfer V (2006) Ribosomal, telomeric and heterochromatin sequences localization in the karyotype of Anemone hortensis. Bot J Linn Soc 150(2):177–186. https://doi.org/10.1111/j.1095-8339.2006.00467.x
Article
Google Scholar
Mlinarec J, Skuhala A, Jurković A, Malenica N, McCann J, Weiss-Schneeweiss H, Bohanec B, Besendorfer V (2019) The repetitive DNA composition in the natural pesticide producer Tanacetum cinerariifolium: interindividual variation of subtelomeric tandem repeats. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00613
Article
Google Scholar
Molnár-Baji É (2013) Turjánvidék: Az Alföld rejtett kincse. WWF Magazin 2:6–9
Google Scholar
Mower JP, Guo W, Partha R, Fan W, Levsen N, Wolff K, Nugent JM, Pabón-Mora N, González F (2021) Plastomes from tribe Plantagineae (Plantaginaceae) reveal infrageneric structural synapormorphies and localized hypermutation for Plantago and functional loss of ndh genes from Littorella. Mol Phylogenet Evol 162:107217. https://doi.org/10.1016/j.ympev.2021.107217
Article
Google Scholar
Namoff S, Husby CE, Francisco-Ortega J, Noblick LR, Lewis CE, Griffith MP (2010) How well does a botanical garden collection of a rare palm capture the genetic variation in a wild population? Biol Conserv 143(5):1110–1117. https://doi.org/10.1016/j.biocon.2010.02.004
Article
Google Scholar
Nei M (1978) ESTIMATION OF AVERAGE HETEROZYGOSITY AND GENETIC DISTANCE FROM A SMALL NUMBER OF INDIVIDUALS. Genetics 89(3):583–590. https://doi.org/10.1093/genetics/89.3.583
Article
CAS
Google Scholar
Osman AKE, Abedin MAE (2019) Karyological and molecular studies between six species of Plantago in the Northern border region at Saudi Arabia. J Taibah Univ Sci 13(1):297–308. https://doi.org/10.1080/16583655.2019.1571400
Article
Google Scholar
Palermo AM, De Vita A, Peruzzi L, Gargano D, Bernardo L, Musacchio A (2010) Does Plantago brutia Ten.(Plantaginaceae) merit specific rank? Insights from nrDNA and cpDNA data. Plant Biosyst 144(3):573–581. https://doi.org/10.1080/11263501003672496
Article
Google Scholar
Peruzzi L, Cesca G (2002) Chromosome numbers of flowering plants from Calabria S Italy. Willdenowia 32(1):33–44. https://doi.org/10.3372/wi.32.32102
Article
Google Scholar
Plenk K, Bardy K, Höhn M, Thiv M, Kropf M (2017) No obvious genetic erosion, but evident relict status at the westernmost range edge of the Pontic-Pannonian steppe plant Linum flavum L.(Linaceae) in Central Europe. Ecol Evol 7(16):6527–6539. https://doi.org/10.1002/ece3.2990
Article
Google Scholar
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959. https://doi.org/10.1093/genetics/155.2.945
Article
CAS
Google Scholar
Pupin S, Sebbenn AM, Cambuim J, Silva AM, Zaruma DUG, Silva PHM, Rosse LN, Souza IC, Marino CL, Moraes MLT (2019) Effects of pollen contamination and non-random mating on inbreeding and outbreeding depression in a seedling seed orchard of Eucalyptus urophylla S.T. Blake. For Ecol Manag 437:272–281. https://doi.org/10.1016/j.foreco.2019.01.050
Article
Google Scholar
Rahimi M, Maleki HH, Mortezavi M (2017) Identification of informative markers of agronomic traits in different ecotypes of sand plantain (Plantago psyllium). Biologija. https://doi.org/10.6001/biologija.v63i4.3607
Article
Google Scholar
Rahn K (1996) A phylogenetic study of the Plantaginaceae. Bot J Linn Soc 120(2):145–198. https://doi.org/10.1111/j.1095-8339.1996.tb00484.x
Article
Google Scholar
Rauschkolb R, Szczeparska L, Kehl A, Bossdorf O, Scheepens JF (2019) Plant populations of three threatened species experience rapid evolution under ex situ cultivation. Biodivers Conserv 28:3951–3969. https://doi.org/10.1007/s10531-019-01859-9
Article
Google Scholar
Rohlf FJ (1998) NTSYS-numerical taxonomy and multivariate analysis system. Exeter Publ, New York
Google Scholar
Rønsted N, Chase MW, Albach DC, Bello MA (2002) Phylogenetic relationships within Plantago (Plantaginaceae): evidence from nuclear ribosomal ITS and plastid trnL-F sequence data. Bot J Linn Soc 139(4):323–338. https://doi.org/10.1046/j.1095-8339.2002.00070.x
Article
Google Scholar
Rucińska A, Puchalski J (2011) Comparative molecular studies on the genetic diversity of an ex situ garden collection and its source population of the critically endangered polish endemic plant Cochlearia polonica E. Fröhlich Biodivers Conserv 20(2):401–413. https://doi.org/10.1007/s10531-010-9965-z
Article
Google Scholar
Sa O, Pereira JA, Baptista P (2011) Optimization of DNA extraction for RAPD and ISSR analysis of Arbutus unedo L. leaves. Intern J Mol Sci 12:4156–4164. https://doi.org/10.3390/ijms12064156
Article
CAS
Google Scholar
Sagarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147
Article
Google Scholar
Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: Problems and prospects. Mol Ecol 7:465–474. https://doi.org/10.1046/j.1365-294x.1998.00318.x
Article
Google Scholar
Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40(1):415–436
Article
Google Scholar
Shahriari Z, Heidari B, Dadkhodaie A, Richards CM (2018) Analysis of karyotype, chromosome characteristics, variation in mucilage content and grain yield traits in Plantago ovata and P. psyllium species. Ind Crops Prod 123:676–686. https://doi.org/10.1016/j.indcrop.2018.07.009
Article
CAS
Google Scholar
Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94(3):275–288. https://doi.org/10.3732/ajb.94.3.275
Article
CAS
Google Scholar
Simmons MP, Ochoterena H, Carr TG (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analysis. Syst Biol 50(3):454–462. https://doi.org/10.1080/106351501300318049
Article
CAS
Google Scholar
Smouse PE, Banks SC, Peakall R (2017) Converting quadratic entropy to diversity: both animals and alleles are diverse, but some are more diverse than others. PLoS ONE 12:e0185499. https://doi.org/10.1371/journal.pone.0185499
Article
CAS
Google Scholar
Soó R (1968) A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve III. Akadémiai Kiadó, Budapest, p 506
Google Scholar
Soó R (1970) A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve IV. Akadémiai Kiadó, Budapest, p 594
Google Scholar
Tabachnick BG, Fidell LS (2013) Using multivariate statistics, 6th edn. Allyn and Bacon, Boston
Google Scholar
Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA: short communication. Plant Mol Biol 17:1105–1109. https://doi.org/10.1007/BF00037152
Article
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673
Article
CAS
Google Scholar
Torres-Ruiz RA, Hemleben V (1994) Pattern and degree of methylation in ribosomal RNA genes of Cucurbita pepo L. Plant Mol Biol 26(4):1167–1179. https://doi.org/10.1007/BF00040697
Article
CAS
Google Scholar
Tzonev R, Karakiev T (2007) Plantago maxima (Plantaginaceae): a relict species new for the Bulgarian flora. Phytol Balc 13(3):347–350
Google Scholar
Vidéki R, Máté A (2003) Az óriás útifű (Plantago maxima Juss.) Magyarországon. Flora Pannonica 1(1):94–107
Google Scholar
Volis S, Blecher M (2010) Quasi in situ: a bridge between ex situ and in situ conservation of plants. Biodivers and Conserv 19(9):2441–2454. https://doi.org/10.1007/s10531-010-9849-2
Article
Google Scholar
Willner W, Moser D, Plenk K, Aćić S, Demina ON, Höhn M, Kuzemko A, Roleček J, Vassilev K, Vynokurov D, Kropf M (2021) Long-term continuity of steppe grasslands in eastern Central Europe: evidence from species distribution patterns and chloroplast haplotypes. J of Biogeogr 48:3104–3117. https://doi.org/10.1111/jbi.14269
Article
Google Scholar
Wilson WD, Hutchinson JT, Ostrand KG (2017) Genetic diversity assessment of in situ and ex situ Texas wild rice (Zizania texana) populations, an endangered plant. Aquat Bot 136:212–219. https://doi.org/10.1016/j.aquabot.2015.12.005
Article
Google Scholar
Wong C, Murray BG (2014) In situ hybridization with genomic and rDNA probes reveals complex origins for polyploid New Zealand species of Plantago (Plantaginaceae). New Zealand J of Bot 52(3):315–327. https://doi.org/10.1080/0028825X.2014.898664
Article
Google Scholar
Wu FQ, Shen SK, Zhang XJ, Wang YH, Sun WB (2015) Genetic diversity and population structure of an extremely endangered species: the world’s largest Rhododendron. AoB PLANTS. https://doi.org/10.1093/aobpla/plu082
Article
Google Scholar
Kovács Zs, Barabás S, Csontos P, Höhn M, Honfi P (2019) Az óriás útifű (Plantago maxima Juss. ex Jacq.) ex situ védelembe vonása II. Élőhelypreferencia-vizsgálat [Ex situ protection of the giant plantain (Plantago maxima Juss. ex Jacq.) II. Habitat preference studies]. Botanikai Közlemények 106(2):157–172. https://doi.org/10.17716/BotKozlem.2019.106.2.157
Article
Google Scholar
Zsófia, Kovács Sándor, Barabás Péter, Csontos Mária, Höhn Péter, Honfi (2019) Az óriás útifű (Plantago maxima Juss. ex Jacq.) ex situ védelembe vonása II. Élőhelypreferencia-vizsgálat. Botanikai Közlemények 106(2):157–172. https://doi.org/10.17716/BotKozlem.2019.106.2.157
Article
Google Scholar