Abd el-Samad HM, Shaddad MAK, Barakat N (2011) Improvement of plants salt tolerance by exogenous application of amino acids. J Med Plant Res 5(24):5692–5699
CAS
Google Scholar
Ashraf M, Kausar A, Ashraf MY (2003) Alleviation of salt stress in pearl millet (Pennisetum glaucum (L.) R. Br.) through seed treatments. Agronomie 23:227–234. https://doi.org/10.1051/agro
Article
Google Scholar
Bado S, Forster BP, Ghanim AMA, Jankowicz-Cieslak J, Berthold G, Luxiang L (2016) Protocols for pre-field screening of mutants for salt tolerance in rice, wheat and barley. In Springer (Issue April). Springer Switzerland. https://doi.org/10.1007/978-3-319-26590-2
Breseghello F (2013) Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.) Flavio. J Agric Food Chem 61:8277–8286. https://doi.org/10.1021/jf305531j
Article
CAS
PubMed
Google Scholar
Djanaguiraman M, Sheeba JA, Shanker AK, Devi DD, Bangarusamy U (2006) Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284:363–373. https://doi.org/10.1007/s11104-006-0043-y
Article
CAS
Google Scholar
Farooq M, Basra SMA, Ahmad N, Hafeez K (2005) Thermal hardening: a new seed vigor enhancement tool in rice. J Integr Plant Biol 47(2):187–193
Article
Google Scholar
Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na ‡ / H ‡ exchanger gene in. Biochem Biophys Acta 1446:149–155
CAS
PubMed
Google Scholar
Gregorio GB, Senadhira D, Mendoza RD, Division B (1997). Screening Rice for Salinity Tolerance. In IRRI Discusion Paper Series (22nd ed., Issue 22). International Rice Research Institute
Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192(March):38–46. https://doi.org/10.1016/j.jplph.2015.12.011
Article
CAS
PubMed
Google Scholar
Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198(1):38–45. https://doi.org/10.1111/j.1439-037X.2011.00485.x
Article
Google Scholar
Jamil M, Malook I, Parveen S, Naz T, Ali A, Ullah Jan S, Ur Rehman S (2013) Smoke priming, a potent protective agent against salinity effect on proline accumulation, elemental uptake, pigmental attributes and protein banding patterns of rice (Oryza sativa). J Stress Physiol Biochem 9(1):169–183
Google Scholar
Jisha KC, Puthur JT (2014) Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. J Crop Sci Biotechnol 17(4):209–219. https://doi.org/10.1007/s12892-014-0077-2
Article
Google Scholar
Lafitte HR, Ismail A, Bennett J (2004) Abiotic stress tolerance in rice for Asia: progress and the future. The 4th International Crop Science Congress, 1–17. www.cropscience.org.au
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Article
CAS
PubMed
Google Scholar
Ma NL, Che Lah WA, Kadir NA, Mustaqim M, Rahmat Z, Ahmad A, Lam SD, Ismail MR (2018) Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections. PLoS ONE 13(2):1–17. https://doi.org/10.1371/journal.pone.0192732
Article
CAS
Google Scholar
Manimaran P, Venkata Reddy S, Moin M, Raghurami Reddy M, Yugandhar P, Mohanraj SS, Balachandran SM, Kirti PB (2017) Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci Rep 7(9341):1–16. https://doi.org/10.1038/s41598-017-10022-9
Article
CAS
Google Scholar
Martı´nez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(March):1001–1012. https://doi.org/10.1104/pp.106.092635
Article
CAS
Google Scholar
Maswada HF, Djanaguiraman M, Prasad PVV (2018) Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J Agron Crop Sci 204(6):577–587. https://doi.org/10.1111/jac.12280
Article
CAS
Google Scholar
Mekawy AMM, Assaha DVM, Yahagi H, Tada Y, Ueda A, Saneoka H (2015) Growth, physiological adaptation, and gene expression analysis of two Egyptian rice cultivars under salt stress. Plant Physiol Biochem 87:17–25. https://doi.org/10.1016/j.plaphy.2014.12.007
Article
CAS
PubMed
Google Scholar
Moreno C, Seal CE, Papenbrock J (2018) Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. J Agron Crop Sci 204(1):40–48. https://doi.org/10.1111/jac.12242
Article
CAS
Google Scholar
Nawaz J, Hussain M, Jabbar A, Nadeem GA, Sajid M, Subtain M, Shabbir I (2013) Seed priming A technique. Int J Agric Crop Sci 6(20):1373–1381
Google Scholar
Paparella S, Araujo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293. https://doi.org/10.1007/s00299-015-1784-y
Article
CAS
PubMed
Google Scholar
Purwestri YA, Refli. (2016) The response of antioxidant genes in rice (Oryza sativa L.) seedling Cv. Cempo Ireng under drought and salinity stresses. AIP Confer Proceed 1744:020047. https://doi.org/10.1063/1.4953521
Article
CAS
Google Scholar
Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int J Agric Biol 10(4):451–454
Google Scholar
Razzaque S, Elias SM, Haque T, Biswas S, Jewel GMNA, Rahman S, Weng X, Ismail AM, Walia H, Juenger TE, Seraj ZI (2019) Gene expression analysis associated with salt stress in a reciprocally crossed rice population. Sci Rep 9(8249):1–17. https://doi.org/10.1038/s41598-019-44757-4
Article
CAS
Google Scholar
Reddy INBL, Kim B-K, Yoon I-S, Kim K-H, Kwon T-R (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24(3):123–144. https://doi.org/10.1016/j.rsci.2016.09.004
Article
Google Scholar
Sakina A, Ahmed I, Shahzad A, Iqbal M, Asif M (2016) Genetic variation for salinity tolerance in Pakistani rice (Oryza sativa L.) Germplasm. J Agron Crop Sci 202(1):25–36. https://doi.org/10.1111/jac.12117
Article
CAS
Google Scholar
Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane NA+/H+ antiporter SOS1 controls long-distance NA+ transport in plants. Plant Cell 14:465–477. https://doi.org/10.1105/tpc.010371
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutrisno, Susanto FA, Wijayanti P, Retnoningrum MD, Nuringtyas TR, Joko T, Purwestri YA (2018) Screening of resistant Indonesian black rice cultivars against bacterial leaf blight. Euphytica. https://doi.org/10.1007/s10681-018-2279-z
Article
Google Scholar
Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527. https://doi.org/10.1093/aob/mcg058
Article
CAS
PubMed
PubMed Central
Google Scholar
Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63(5):609–623. https://doi.org/10.1007/s11103-006-9112-0
Article
CAS
PubMed
Google Scholar
Wang SW, Zhao XQ, Li M, Huang LY, Xu JL, Zhang F, Cui YR, Fu BY, Li ZK (2016) Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J Exp Bot 67(1):405–419. https://doi.org/10.1093/jxb/erv476
Article
CAS
PubMed
Google Scholar
Wang J, Zhu J, Zhang Y, Fan F, Li W, Wang F, Zhong W, Wang C, Yang J (2018) Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage. Sci Rep 8(2085):1–13. https://doi.org/10.1038/s41598-018-19984-w
Article
CAS
Google Scholar
Wangsawang T, Chuamnakthong S, Kohnishi E, Sripichitt P, Sreewongchai T, Ueda A (2018) A salinity-tolerant japonica cultivar has Na+ exclusion mechanism at leaf sheaths through the function of a Na+ transporter OsHKT1;4 under salinity stress. J Agron Crop Sci 204(3):274–284. https://doi.org/10.1111/jac.12264
Article
CAS
Google Scholar
Widodo PJH, Newbigin E, Tester M, Bacic A, & Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60(14):4089–4103. https://doi.org/10.1093/jxb/erp243
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu B, Munkhtuya Y, Li J, Hu Y, Zhang Q, Zhang Z (2018) Comparative transcriptional profiling and physiological responses of two contrasting oat genotypes under salt stress. Sci Rep 8(16248):1–9. https://doi.org/10.1038/s41598-018-34505-5
Article
CAS
Google Scholar
Yang A, Akhtar SS, Iqbal S, Qi Z, Alandia G, Saddiq MS, Jacobsen SE (2018) Saponin seed priming improves salt tolerance in quinoa. J Agron Crop Sci 204(1):31–39. https://doi.org/10.1111/jac.12229
Article
CAS
Google Scholar
Yoshida S, Forno DA, Cock JH, Gomez, K. A. (1976). Laboratory manual for physiological studies of rice. In The International Rice Research Institute (3rd ed., Vol. 53, Issue 9). IRRI. http://books.irri.org/9711040085_content.pdf
Zhao X, Wang W, Zhang F, Deng J, Li Z, Fu B (2014) Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PLoS ONE 9(9):1–7. https://doi.org/10.1371/journal.pone.0108020
Article
CAS
Google Scholar