Abdallah RAB, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88. https://doi.org/10.1016/j.biocontrol.2016.03.005
Article
Google Scholar
Abdelaziz AM, Dacrory S, Hashem AH, Attia MS, Hasanin M, Fouda HM, Kamel S, ElSaied H (2021) Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatal Agric Biotechnol 35:102083. https://doi.org/10.1016/j.bcab.2021.102083
Article
CAS
Google Scholar
Abdelaziz AM, Attia MS, Salem MS, Refaay DA, Alhoqail WA, Senousy HH (2022a) Cyanobacteria-mediated immune responses in pepper plants against Fusarium wilt. Plants. https://doi.org/10.3390/plants11152049
Article
Google Scholar
Abdelaziz AM, El-Wakil DA, Attia MS, Ali OM, AbdElgawad H, Hashem AH (2022b) Inhibition of Aspergillus flavus growth and aflatoxin production in Zea mays L. using endophytic Aspergillus fumigatus. J Fungi 8(5):482. https://doi.org/10.3390/jof8050482
Article
CAS
Google Scholar
Abdelaziz AM, Salem SS, Khalil A, El-Wakil DA, Fouda HM, Hashem AH (2022c) Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. Biometals 35:601–616. https://doi.org/10.1007/s10534-022-00391-8
Article
CAS
Google Scholar
Abdel-Motaal F, Kamel N, El-Zayat S, Abou-Ellail M (2020) Early blight suppression and plant growth promotion potential of the endophyte Aspergillus flavus in tomato plant. Ann Agric Sci 65(2):117–123. https://doi.org/10.1016/j.aoas.2020.07.001
Article
Google Scholar
Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HY, Lu G-D (2019) Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 129:7–18. https://doi.org/10.1016/j.micpath.2019.01.042
Article
CAS
Google Scholar
Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184(3):529–544. https://doi.org/10.1111/j.1469-8137.2009.03014.x
Article
CAS
Google Scholar
Aldinary AM, Abdelaziz AM, Farrag AA, Attia MS (2021) Biocontrol of tomato Fusarium wilt disease by a new Moringa endophytic Aspergillus isolates. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.03.423
Article
Google Scholar
Alnusairi GS, Mazrou YS, Qari SH, Elkelish AA, Soliman MH, Eweis M, ElNahhas N (2021) Exogenous nitric oxide reinforces photosynthetic efficiency, osmolyte, mineral uptake, antioxidant, expression of stress-responsive genes and ameliorates the effects of salinity stress in wheat. Plants 10(8):1693. https://doi.org/10.3390/plants10081693
Article
CAS
Google Scholar
Attia MS, El-Naggar HA, Abdel-Daim MM, El-Sayyad GS (2021a) The potential impact of Octopus cyanea extracts to improve eggplant resistance against Fusarium-wilt disease: in vivo and in vitro studies. Environ Sci Pollut Res 28(27):35854–35869. https://doi.org/10.1007/s11356-021-13222-z
Article
CAS
Google Scholar
Attia MS, El-Sayyad GS, Abd Elkodous M, Khalil WF, Nofel MM, Abdelaziz AM, Farghali AA, El-Batal AI, El Rouby WM (2021b) Chitosan and EDTA conjugated graphene oxide antinematodes in Eggplant: toward improving plant immune response. Int J Biol Macromol 179:333–344. https://doi.org/10.1016/j.ijbiomac.2021.03.005
Article
CAS
Google Scholar
Attia MS, Abdelaziz AM, Al-Askar AA, Arishi AA, Abdelhakim AM, Hashem AH (2022a) Plant growth-promoting fungi as biocontrol tool against Fusarium wilt disease of tomato plant. J Fungi 8(8):775. https://doi.org/10.3390/jof8080775
Article
CAS
Google Scholar
Attia MS, El-Wakil DA, Hashem AH, Abdelaziz AM (2022b) Antagonistic effect of plant growth-promoting fungi against Fusarium wilt disease in tomato: in vitro and in vivo study. Appl Biochem Biotechnol 194:5100–5118. https://doi.org/10.1007/s12010-022-03975-9
Article
CAS
Google Scholar
Attia MS, Hashem AH, Badawy AA, Abdelaziz AM (2022c) Biocontrol of early blight disease of eggplant using endophytic Aspergillus terreus: improving plant immunological, physiological and antifungal activities. Bot Stud 63(1):1–14. https://doi.org/10.1186/s40529-022-00357-6
Article
CAS
Google Scholar
Baaziz M (2011) Arbuscular mycorrhizal fungi limit incidence of Fusarium oxysporum f. sp. albedinis on date palm seedlings by increasing nutrient contents, total phenols and peroxidase activities. Open Hortic J. https://doi.org/10.2174/1874840601104010010
Article
Google Scholar
Badawy AA, Alotaibi MO, Abdelaziz AM, Osman MS, Khalil AM, Saleh AM, Mohammed AE, Hashem AH (2021) Enhancement of seawater stress tolerance in barley by the endophytic fungus Aspergillus ochraceus. Metabolites 11(7):428
Article
CAS
Google Scholar
Barceló AR, Muñoz R, Sabater F (1987) Lupin peroxidases. I. Isolation and characterization of cell wall-bound isoperoxidase activity. Physiol Plant 71(4):448–454. https://doi.org/10.1111/j.1399-3054.1987.tb02882.x
Article
Google Scholar
Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136. https://doi.org/10.1016/S0065-2113(10)08002-8
Article
CAS
Google Scholar
Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. https://doi.org/10.1007/BF00018060
Article
CAS
Google Scholar
Bergmeyer H (1974) Determination with glucose oxidase and peroxidase. Methods Enzym Anal. https://doi.org/10.1007/BF00018060
Article
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1006/abio.1999.4298
Article
CAS
Google Scholar
Büttner G, Pfähler B, Märländer B (2004) Greenhouse and field techniques for testing sugar beet for resistance to Rhizoctonia root and crown rot. Plant Breed 123(2):158–166. https://doi.org/10.1046/j.1439-0523.2003.00967.x
Article
Google Scholar
Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46(3):186–195. https://doi.org/10.1002/jobm.200510050
Article
CAS
Google Scholar
Chen X (2020) Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Security 12(2):239–251. https://doi.org/10.1007/s12571-020-01016-z
Article
Google Scholar
Christ B, Hörtensteiner S (2014) Mechanism and significance of chlorophyll breakdown. J Plant Growth Regul 33(1):4–20. https://doi.org/10.1007/s00344-013-9392-y
Article
CAS
Google Scholar
Ćilerdžić J, Vukojević J, Stajić M, Stanojković T, Glamočlija J (2014) Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial substrate. J Ethnopharmacol 155(1):312–319. https://doi.org/10.1016/j.jep.2014.05.036
Article
Google Scholar
Cohen-Bazire G, Sistrom W, Vernon L, Seeley G (1966) The Chlorophylls. Academic Press, New York
Google Scholar
Daayf F, El Hadrami A, El-Bebany AF, Henriquez MA, Yao Z, Derksen H, El Hadrami I, Adam LR (2012) Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Recent Adv Polyphen Res 3(3):191–208. https://doi.org/10.1002/9781118299753.ch8
Article
CAS
Google Scholar
Dai, G. H., Andary, C., Cosson-Mondolot, L., & Boubals, D. (1993, September). Polyphenols and resistance of grapevines to downy mildew. In International Symposium on Natural Phenols in Plant Resistance 381 (pp. 763-766). https://doi.org/10.17660/ActaHortic.1994.381.110
Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053
Article
Google Scholar
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T (2022) Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. J Plant Physiol 276:153755. https://doi.org/10.1016/j.jplph.2022.153755
Article
CAS
Google Scholar
Dhouib H, Zouari I, Abdallah DB, Belbahri L, Taktak W, Triki MA, Tounsi S (2019) Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol Control 139:104092. https://doi.org/10.1016/j.biocontrol.2019.104092
Article
CAS
Google Scholar
Doohan F, Zhou B (2017) Fungal pathogens of plants. In: Kavanagh K (ed) Fungi: biology and applications. John Wiley & Sons Inc, Hoboken, pp 355–387. https://doi.org/10.1002/9781119374312.ch14
Chapter
Google Scholar
Elbasuney S, El-Sayyad GS, Attia MS, Abdelaziz AM (2022) Ferric oxide colloid: towards green nano-fertilizer for tomato plant with enhanced vegetative growth and immune response against Fusarium wilt disease. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-022-02442-6
Article
Google Scholar
El-Beltagi HS, Mohamed AA, Rashed MM (2010) Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L/). Not Sci Biol 2(4):76–82. https://doi.org/10.15835/nsb245395
Article
CAS
Google Scholar
Elghaffar RYA, Amin BH, Hashem AH, Sehim AE (2022) Promising endophytic Alternaria alternata from leaves of Ziziphus spina-christi: phytochemical analyses, antimicrobial and antioxidant activities. Appl Biochem Biotechnol 194(9):3984–4001. https://doi.org/10.1007/s12010-022-03959-9
Article
CAS
Google Scholar
Elmholt S (1996) Microbial activity, fungal abundance, and distribution of Penicillium and Fusarium as bioindicators of a temporal development of organically cultivated soils. Biol Agric Hortic 13(2):123–140. https://doi.org/10.1080/01448765.1996.9754772
Article
Google Scholar
El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45(3):215–224. https://doi.org/10.1007/s10725-005-4928-1
Article
CAS
Google Scholar
Ferus P, Barta M, Konôpková J (2019) Endophytic fungus Beauveria bassiana can enhance drought tolerance in red oak seedlings. Trees 33(4):1179–1186. https://doi.org/10.1007/s00468-019-01854-1
Article
CAS
Google Scholar
Ghaffari MR, Mirzaei M, Ghabooli M, Khatabi B, Wu Y, Zabet-Moghaddam M, Mohammadi-Nejad G, Haynes PA, Hajirezaei MR, Sepehri M (2019) Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ Exp Bot 157:197–210. https://doi.org/10.1016/j.envexpbot.2018.10.002
Article
CAS
Google Scholar
Harb A, Krishnan A, Ambavaram MM, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154(3):1254–1271. https://doi.org/10.1104/pp.110.161752
Article
CAS
Google Scholar
Hashem AH, Abdelaziz AM, Askar AA, Fouda HM, Khalil AM, Abd-Elsalam KA, Khaleil MM (2021) Bacillus megaterium-mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solani in Faba Bean Plants. Journal of Fungi 7(3):195. https://doi.org/10.3390/jof7030195
Article
CAS
Google Scholar
Hashem AH, Shehabeldine AM, Abdelaziz AM, Amin BH, Sharaf MH (2022) Antifungal activity of endophytic Aspergillus terreus extract against some fungi causing mucormycosis: ultrastructural study. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-03876-x
Article
Google Scholar
Hibar K, Edel-Herman V, Steinberg C, Gautheron N, Daami-Remadi M, Alabouvette C, El Mahjoub M (2007) Genetic diversity of Fusarium oxysporum populations isolated from tomato plants in Tunisia. J Phytopathol 155(3):136–142. https://doi.org/10.1111/j.1439-0434.2007.01198.x
Article
CAS
Google Scholar
Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim et Biophys Acta BBA Bioenerg 1807(8):977–988. https://doi.org/10.1016/j.bbabio.2010.12.007
Article
CAS
Google Scholar
Hu Z, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27(1):183–220. https://doi.org/10.1081/PLN-120027555
Article
CAS
Google Scholar
Hyakumachi M (2013) Research on biological control of plant diseases: present state and perspectives. J Gen Plant Pathol 79(6):435–440. https://doi.org/10.1007/s10327-013-0484-0
Article
Google Scholar
Irigoyen J, Einerich D, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol Plant 84(1):55–60
Article
CAS
Google Scholar
Jackson AO, Taylor CB (1996) Plant-microbe interactions: life and death at the interface. Plant Cell 8(10):1651. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
Article
CAS
Google Scholar
Jagota S, Dani H (1982) A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal Biochem 127(1):178–182. https://doi.org/10.1016/0003-2697(82)90162-2
Article
CAS
Google Scholar
Kang SG, Lee KE, Singh M, Kumar P, Matin MN (2021) Rice lesion mimic mutants (LMM): the current understanding of genetic mutations in the failure of ROS scavenging during lesion formation. Plants 10(8):1598. https://doi.org/10.3390/plants10081598
Article
CAS
Google Scholar
Khalil AMA, Hashem AH, Abdelaziz AM (2019) Occurrence of toxigenic Penicillium polonicum in retail green table olives from the Saudi Arabia market. Biocatal Agric Biotechnol 21:101314. https://doi.org/10.1016/j.bcab.2019.101314
Article
Google Scholar
Khalil A, Abdelaziz A, Khaleil M, Hashem A (2021) Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett Appl Microbiol 72(3):263–274. https://doi.org/10.1111/lam.13414
Article
CAS
Google Scholar
Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12(1):1–14. https://doi.org/10.1186/1471-2180-12-3
Article
CAS
Google Scholar
Khattab AM, Abo-Taleb HA, Abdelaziz AM, El-Tabakh MA, El-Feky MM, Abu-Elghait M (2022) Daphnia magna and Gammarus pulex, novel promising agents for biomedical and agricultural applications. Sci Rep 12(1):1–9. https://doi.org/10.1038/s41598-022-17790-z
Article
CAS
Google Scholar
Kim J, Campbell B, Mahoney N, Chan K, Molyneux R, May G (2007) Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Lett Appl Microbiol 45(2):134–141. https://doi.org/10.1111/j.1472-765X.2007.02159.x
Article
CAS
Google Scholar
Maghsoudi K, Emam Y, Pessarakli M (2016) Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J Plant Nutr 39(7):1001–1015. https://doi.org/10.1080/01904167.2015.1109108
Article
CAS
Google Scholar
Matta A, Dimond AE (1963) Symptoms of Fusarium wilt in relation to quantity of fungus and enzyme activity in tomato stems. Phytopathology 53(5):574. https://doi.org/10.1016/B978-0-12-675402-5.50009-X
Article
Google Scholar
Mikulic-Petkovsek M, Schmitzer V, Jakopic J, Cunja V, Veberic R, Munda A, Stampar F (2013) Phenolic compounds as defence response of pepper fruits to Colletotrichum coccodes. Physiol Mol Plant Pathol 84:138–145. https://doi.org/10.1016/j.pmpp.2013.09.003
Article
CAS
Google Scholar
Morsy M, Cleckler B, Armuelles-Millican H (2020) Fungal endophytes promote tomato growth and enhance drought and salt tolerance. Plants 9(7):877. https://doi.org/10.3390/plants9070877
Article
CAS
Google Scholar
Mukherjee S, Choudhuri M (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58(2):166–170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
Article
CAS
Google Scholar
Murray A, Kisin E, Castranova V, Kommineni C, Gunther M, Shvedova A (2007) Phenol-induced in vivo oxidative stress in skin: evidence for enhanced free radical generation, thiol oxidation, and antioxidant depletion. Chem Res Toxicol 20(12):1769–1777. https://doi.org/10.1021/tx700201z
Article
CAS
Google Scholar
Nefzi A, Abdallah RAB, Jabnoun-Khiareddine H, Ammar N, Daami-Remadi M (2019) Ability of endophytic fungi associated with Withania somnifera L. to control Fusarium Crown and Root Rot and to promote growth in tomato. Braz J Microbiol 50(2):481–494. https://doi.org/10.1007/s42770-019-00062-w
Article
CAS
Google Scholar
Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59. https://doi.org/10.1016/j.micpath.2015.04.001
Article
CAS
Google Scholar
Olatunji TL, Afolayan AJ (2018) The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: a review. Food Sci Nutr 6(8):2239–2251. https://doi.org/10.1002/fsn3.790
Article
CAS
Google Scholar
Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol 55(1):113–128. https://doi.org/10.1007/s10526-009-9241-x
Article
Google Scholar
Poveda J, Abril-Urias P, Escobar C (2020) "Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992. https://doi.org/10.3389/fmicb.2020.00992
Article
Google Scholar
Rahman MA (2019) Rice (Oryza sativa) receptor for activated C kinase1b (OsRACK1B) regulates chlorophyll catabolism oxidative stress signaling and pollen development pathways. FASEB J. https://doi.org/10.1096/fasebj.2020.34.s1.06651
Article
Google Scholar
Righini H, Roberti R (2019) Algae and cyanobacteria as biocontrol agents of fungal plant pathogens. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe interface. Springer, Berlin, pp 219–238. https://doi.org/10.1017/S0021859621000885
Chapter
Google Scholar
Rios-Gonzalez K, Erdei L, Lips SH (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162(6):923–930. https://doi.org/10.1016/S0168-9452(02)00040-7
Article
CAS
Google Scholar
Rongai D, Milano F, Sciò E (2012) Inhibitory effect of plant extracts on conidial germination of the phytopathogenic fungus Fusarium oxysporum. Am J Plant Sci. https://doi.org/10.4236/ajps.2012.312207
Article
Google Scholar
Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16(3):616–628. https://doi.org/10.1105/tpc.019398
Article
CAS
Google Scholar
Saia S, Corrado G, Vitaglione P, Colla G, Bonini P, Giordano M, Stasio ED, Raimondi G, Sacchi R, Rouphael Y (2021) An endophytic fungi-based biostimulant modulates volatile and non-volatile secondary metabolites and yield of greenhouse basil (Ocimum basilicum L.) through variable mechanisms dependent on salinity stress level. Pathogens 10(7):797. https://doi.org/10.3390/pathogens10070797
Article
CAS
Google Scholar
Sathiyabama M, Charles RE (2015) Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Carbohyd Polym 133:400–407. https://doi.org/10.1016/j.carbpol.2015.07.066
Article
CAS
Google Scholar
Sharaf MH, Abdelaziz AM, Kalaba MH, Radwan AA, Hashem AH (2022) Antimicrobial, antioxidant, cytotoxic activities and phytochemical analysis of fungal endophytes isolated from Ocimum basilicum. Appl Biochem Biotechnol 194(3):1271–1289. https://doi.org/10.1007/s12010-021-03702-w
Article
CAS
Google Scholar
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319. https://doi.org/10.1093/jexbot/53.372.1305
Article
CAS
Google Scholar
Snedecor G, Cochran WG (1980) Statistical methods. Iowa State University, Iowa. https://doi.org/10.2307/1565343
Book
Google Scholar
Sonawane H, Shelke D, Chambhare M, Dixit N, Math S, Sen S, Borah SN, Islam NF, Joshi SJ, Yousaf B (2022) Fungi-derived agriculturally important nanoparticles and their application in crop stress management–Prospects and environmental risks. Environ Res. https://doi.org/10.1016/j.envres.2022.113543
Article
Google Scholar
Srinivas C, Devi DN, Murthy KN, Mohan CD, Lakshmeesha T, Singh B, Kalagatur NK, Niranjana S, Hashem A, Alqarawi AA (2019) Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity–A review. Saudi J Biol Sci 26(7):1315–1324. https://doi.org/10.1016/j.sjbs.2019.06.002
Article
CAS
Google Scholar
Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4(2):57. https://doi.org/10.3390/jof4020057
Article
CAS
Google Scholar
Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE 8(8):e72520. https://doi.org/10.1371/journal.pone.0072520
Article
CAS
Google Scholar
Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97
Article
CAS
Google Scholar
Thipyapong P, Hunt MD, Steffens JC (1995) Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry 40(3):673–676. https://doi.org/10.1016/j.tplants.2009.11.009
Article
CAS
Google Scholar
Van Loon L, Bakker P, Pieterse C (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483. https://doi.org/10.1146/annurev.phyto.36.1.453
Article
Google Scholar
Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99(7):2955–2965. https://doi.org/10.1007/s00253-015-6487-3
Article
CAS
Google Scholar
Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103(8):3327–3340. https://doi.org/10.1007/s00253-019-09713-2
Article
CAS
Google Scholar
Zou YN, Wu QS, Kuča K (2021) Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol 23:50–57. https://doi.org/10.1111/plb.13161
Article
CAS
Google Scholar