Acosta-Martinez V, Cano A, Johnson J (2018) Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices. Appl Soil Ecol 126:121–128
Article
Google Scholar
Ai C, Liang G, Sun J, Wang X, Zhou W (2012) Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 173–174:330–338
Article
CAS
Google Scholar
Allison S (2006) Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes. Biogeochemistry 81:361–373
Article
CAS
Google Scholar
Arafat Y, Wei X, Jiang Y, Chen T, Saqib HSA, Lin S, Lin W (2017) Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems. Int J Mol Sci 18:1727
Article
PubMed Central
CAS
Google Scholar
Arcand MM, Levy-Booth DJ, Helgason BL (2017) Resource legacies of organic and conventional management differentiate soil microbial carbon use. Front Microbiol 8:2293
Article
PubMed
PubMed Central
Google Scholar
Bronick C, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22
Article
CAS
Google Scholar
Calbrix R, Barray S, Chabrerie O, Fourrie L, Laval K (2007) Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land. Appl Soil Ecol 35:511–522
Article
Google Scholar
Chae Y, Cui R, Woong Kim S, An G, Jeong SW, An YJ (2017) Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health. Ecotox Environ Safe 135:368–374
Article
CAS
Google Scholar
Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS (2012) Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol 64:450–460
Article
PubMed
Google Scholar
Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41
Article
Google Scholar
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633-642
Article
CAS
PubMed
Google Scholar
Dai L, Liu C, Yu L, Song C, Peng L, Li X, Tao L, Li G (2018) Organic matter regulates ammonia-oxidizing bacterial and archaeal communities in the surface sediments of Ctenopharyngodon idellus aquaculture ponds. Front Microbiol 9:2290
Article
PubMed
PubMed Central
Google Scholar
Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606
Article
CAS
Google Scholar
Fang H, Han L, Zhang H, Deng Y, Ge Q, Mei J, Long Z, Yu Y (2018) Repeated treatments of ciprofloxacin and kresoxim-methyl alter their dissipation rates, biological function and increase antibiotic resistance in manured soil. Sci Total Environ 628–629:661–671
Article
PubMed
CAS
Google Scholar
Garcia-Delgado C, Barba-Vicente V, Marin-Benito JM, Mariano Igual J, Sanchez-Martin MJ, Sonia Rodriguez-Cruz M (2019) Influence of different agricultural management practices on soil microbial community over dissipation time of two herbicides. Sci Total Environ 646:1478–1488
Article
CAS
PubMed
Google Scholar
Guo K-F, Lin R-H, Jian J-H, Cai Z-X, Cao B-G, F.-S. X, Xiao J-X, Huang Z-Z, Lin J-C (2017) Long-term ecological research and application of agroecosystem. Agriculture Research Institute Council of Agriculture, Executive Yuan, Taiwan, pp 141–150 (In Chinese)
Hardy RW, Burns RC, Holsten RD (1973) Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81
Article
CAS
Google Scholar
Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, Brodie EL, Desantis TZ, Andersen GL, Williams AL, Hovenden MJ (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil. Environ Microbiol 14:3081–3096
Article
CAS
PubMed
Google Scholar
Hendershot WH, Lalande H, Reyes D, MacDonald D (2008) Trace element assessment. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. CRC Press Taylor & Francis, Boca Raton, pp 109–120
Google Scholar
Ho I (1979) Acid phosphatase activity in forest soil. Forest Sci 25:567–568
Article
Google Scholar
Jangid K, Williams M, Franzluebbers A, Schmidt T, Coleman D, Whitman W (2011) Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Boil Biochem 43:2184–2193
Article
CAS
Google Scholar
Jeanbille M, Buee M, Bach C, Cebron A, Frey-Klett P, Turpault MP, Uroz S (2016) Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communitiesacross temperate beech forest soil sequences. Microb Ecol 71:482–493
Article
CAS
PubMed
Google Scholar
Ju Y, Tian H, Zhang R, Zuo L, Jin G, Xu Q, Ding X, Li X, Chu Z (2017) Overexpression of OsHSP18.0-CI enhances resistance to bacterial leaf streak in rice. Rice 10:12
Article
PubMed
PubMed Central
Google Scholar
Jung J, Yeom J, Han J, Kim J, Park W (2012) Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils. J Microbiol 50:365–373
Article
CAS
PubMed
Google Scholar
Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soils 6:68–72
Article
CAS
Google Scholar
Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Khafipour E, Krause DO, Entz MH, de Kievit TR, Fernando WG (2012) Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS ONE 7:e51897
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YC, Li Z, Li ZW, Jiang YH, Weng BQ, Lin WX (2016) Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. J Appl Microbiol 121:787–799
Article
CAS
PubMed
Google Scholar
Lynn TM, Liu Q, Hu Y, Yuan H, Wu X, Khai AA, Wu J, Ge T (2017) Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil. Arch Microbiol 199:711–721
Article
CAS
PubMed
Google Scholar
Oshiki M, Araki M, Hirakata Y, Hatamoto M, Yamaguchi T, Araki N (2018) Ureolytic prokaryotes in soil: community abundance and diversity. Microbes Environ 33:230–233
Article
PubMed
PubMed Central
Google Scholar
Pettit NM, Gregory LJ, Freedman RB, Burns RG (1977) Differential stabilities of soil enzymes. Assay and properties of phosphatase and arylsulphatase. Biochim Biophys Acta 485:357–366
Article
CAS
PubMed
Google Scholar
Rafael RBA, Fernandez-Marcos ML, Cocco S, Ruello ML, Weindorf DC, Cardelli V, Corti G (2018) Assessment of potential nutrient release from phosphate rock and dolostone for application in acid soils. Pedoshere 28:44–58
Article
Google Scholar
Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A (2011) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5:389–402
Article
CAS
PubMed
Google Scholar
Schimel J, Becerra CA, Blankinship J (2017) Estimating decay dynamics for enzyme activities in soils from different ecosystems. Soil Biol Biochem 114:5–11
Article
CAS
Google Scholar
Shen C, Shi Y, Fan K, He JS, Adams JM, Ge Y, Chu H (2019) Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. FEMS Microbiol Ecol 95:fiz003
Article
CAS
Google Scholar
Spain AM, Krumholz LR, Elshahed MS (2009) Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 3:992–1000
Article
CAS
PubMed
Google Scholar
Stein LY, Klotz MG (2016) The nitrogen cycle. Curr Biol 26:R94-98
Article
CAS
PubMed
Google Scholar
Sun B, Jia S, Zhang S, McLaughlin NB, Liang A, Chen X, Liu S, Zhang X (2016) No tillage combined with crop rotation improves soil microbial community composition and metabolic activity. Environl Sci Pollut R 23:6472–6482
Article
CAS
Google Scholar
Tabatabai MA (1982) Soil enzyme. In: Page AL (ed) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties No. 9. Agronomy Monograph, Madison
Google Scholar
Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soils. Soil Sci Soc Am J 34:225–229
Article
CAS
Google Scholar
Tang H, Li X, Zu C, Zhang F, Shen J (2013) Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin. J Plant Physiol 170:1243–1250
Article
CAS
PubMed
Google Scholar
van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310
Article
PubMed
Google Scholar
Wang C, Liu D, Bai E (2018) Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Boil Biochem 120:126–133
Article
CAS
Google Scholar
Wang H, Yang SH, Yang JP, Lv YM, Zhao X, Pang JL (2014) Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards. J Zhejiang Univ SCI B 15:953–965
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Wang H, Feng Y, Wang L, Xiao X, Xi Y, Luo X, Sun R, Ye X, Huang Y, Zhang Z, Cui Z (2016) Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Sci Rep 6:35046
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li C, Tu C, Hoyt GD, DeForest JL, Hu S (2017) Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci Total Environ 609:341–347
Article
CAS
PubMed
Google Scholar
Wang S, Li T, Zheng Z, Chen HYH (2019a) Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Sci Total Environ 654:1023–1032
Article
CAS
PubMed
Google Scholar
Wang Z, Liu Y, Zhao L, Zhang W, Liu L (2019b) Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem. PeerJ 7:e6497
Article
PubMed
PubMed Central
CAS
Google Scholar
Watanabe I (1995) Effect of fertilizer application at different stages on the quality of green tea. Soil Sci Plant Nutr 41:763–768
Article
CAS
Google Scholar
Xian Y, Wang M, Chen W (2015) Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere 139:604–608
Article
CAS
PubMed
Google Scholar
Yang X, Ma L, Ji L, Shi Y, Yi X, Yang Q, Ni K, Ruan J (2019) Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea (Camellia sinensis L.) plantation in China. Plant Soil 444:409–426
Article
CAS
Google Scholar
Zhang S, Wang Y, Sun L, Qiu C, Ding Y, Gu H, Wang L, Wang Z, Ding Z (2020) Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiol 20:103
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao J, Zhang R, Xue C, Xun W, Sun L, Xu Y, Shen Q (2014) Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb Ecol 67:443–453
Article
PubMed
Google Scholar
Zhao J, Ni T, Li J, Lu Q, Fang Z, Huang Q, Zhang R, Li R, Shen B, Shen Q (2016) Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl Soil Ecol 99:1–12
Article
Google Scholar
Zhou J, Guan D, Zhou B, Zhao B, Ma M, Qin J, Jiang X, Chen S, Cao F, Shen D, Li J (2015) Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol Biochem 90:42–51
Article
CAS
Google Scholar