Ahmad R, Kim MD, Back KH, Kim HS, Lee HS, Kwon SY (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27:687–698. https://doi.org/10.1007/s00299-007-0479-4
Article
CAS
PubMed
Google Scholar
Baez NOD, Reisz JA, Furdui CM (2015) Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radic Biol Med 80:191–211. https://doi.org/10.1016/j.freeradbiomed
Article
PubMed
Google Scholar
Boutrot F, Chantret N, Gautier MF (2008) Genome wide analysis of the rice and Arabidopsis non-specifific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9:86. https://doi.org/10.1186/1471-2164-9-86
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–206. https://doi.org/10.1146/annurev.arplant.56.032604.144246
Article
CAS
PubMed
Google Scholar
Chang IF, Hsu JL, Hsu PH, Sheng WA, Lai SJ, Lee C, Chen CW, Hsu JC, Wang SY, Wang LY, Chen CC (2012) Comparative phosphoproteomic analysis of microsomal fractions of Arabidopsis thaliana and Oryza sativa subjected to high salinity. Plant Sci 185–186:131–142. https://doi.org/10.1016/j.plantsci.2011.09.009
Article
CAS
PubMed
Google Scholar
Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867. https://doi.org/10.1111/tpj.13299
Article
CAS
PubMed
Google Scholar
Raines CA, Lloyd JC, Dyer TA (1999) New insights into the structure and function of sedoheptulose-1,7-bisphosphatase; an important but neglected Calvin cycle enzyme. J Exp Bot 330:1–8. https://doi.org/10.1093/jxb/50.330.1
Article
Google Scholar
Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ, Charrier V, Parsonage D (2005) Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38:15407–15416. https://doi.org/10.1021/bi992025k
Article
CAS
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. https://doi.org/10.1093/bioinformatics/bti610
Article
CAS
Google Scholar
Dave R, Tripathi RD, Dwivedi S, Tripathi P, Dixit G, Sharma YK, Trivedi PK, Corpas FJ, Barroso JB, Chakrabarty D (2012) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. Hazard Mater 15:1123–1131. https://doi.org/10.1016/j.jhazmat.2012.06.049
Article
CAS
Google Scholar
Dukanovic J, Rapaport D (2011) Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochim Biophys Acta 1808:971–980. https://doi.org/10.1016/j.bbamem.2010.06.021
Article
CAS
PubMed
Google Scholar
Farooq MA, Gill RA, Islam F, Ali B, Liu H, Xu J, He S, Zhou W (2016) Methyl jasmonate regulates antioxidant defense and suppresses arsenicuptake in Brassica napus L. Front Plant Sci 7:468. https://doi.org/10.3389/fpls.2016.00468
Article
PubMed
PubMed Central
Google Scholar
Feng JX, Ji SJ, Shi YH, Wei G, Zhu YX (2004) Analysis of five differentially expressed gene families in fast elongating cotton fiber. Acta Biochim Biophys Sin 36:51–57. https://doi.org/10.1093/abbs/36.1.51
Article
CAS
PubMed
Google Scholar
Gangadhar BH, Sajeesh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW, Prasad R, Mishra RK (2016) Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (StnsLTP1) against multiple abiotic stresses. Front Plant Sci 7:1228. https://doi.org/10.3389/fpls.2016.01228
Article
PubMed
PubMed Central
Google Scholar
Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50. https://doi.org/10.1016/S0098-8472(01)00109-5
Article
CAS
Google Scholar
Giordano E, Peluso I, Rendina R, Digilio A, Furia M (2003) The clot gene of Drosophila melanogaster encodes a conserved member of the thioredoxin-like protein superfamily. Mol Genet Genomics 268:692–697. https://doi.org/10.1007/s00438-002-0792-0
Article
CAS
PubMed
Google Scholar
Gómez R, Figueroa N, Melzer M, Hajirezaei MR, Carrillo N, Lodeyro AF (2020) Photosynthetic characterization of flavodoxin-expressing tobacco plants reveals a high light acclimation-like phenotype. Biochim Biophys Acta Bioenerg 1861:148211. https://doi.org/10.1016/j.bbabio.2020.148211
Article
CAS
PubMed
Google Scholar
Gupta V, Carroll KS (2013) Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta 2:847–875. https://doi.org/10.1016/j.bbagen.2013.05.040
Article
CAS
Google Scholar
Hanke G, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ 36:1071–1084. https://doi.org/10.1111/pce.12046
Article
CAS
PubMed
Google Scholar
Heppner DE, Janssen-Heininger YMW, Van der Vliet A (2017) The role of sulfenic acids in cellular redox signaling: reconciling chemical kinetics and molecular detection strategies. Arch Biochem Biophys 616:40–46. https://doi.org/10.1016/j.abb.2017.01.008
Article
CAS
PubMed
PubMed Central
Google Scholar
Heppner DE, Hristova M, Ida T, Mijuskovic A, Dustin CM, Bogdándi V, Fukuto JM, Dick TP, Nagy P, Li J, Akaike T, Vliet A (2018) Cysteine perthiosulfenic acid (Cys-SSOH): a novel intermediate in thiol-based redox signaling? Redox Biol 14:379–385. https://doi.org/10.1016/j.redox.2017.10.006
Article
CAS
PubMed
Google Scholar
Howat D (2000) Acceptable salinity, sodicity and pH values for boreal forest reclamation. In: ESD. Alberta Environment, Edmonton Alberta. pp. 2–191.
Hsu JL, Wang LY, Wang SY, Lin CH, Ho KC, Shi FK, Chang IF (2009) Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci 7:42. https://doi.org/10.1186/1477-5956-7-42
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji D, Matthew J, Gaffrey WQ (2017) Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Mol Biosystem 13:807–1048. https://doi.org/10.1039/c6mb00861e
Article
Google Scholar
Ji MG, Park HJ, Cha JY, Kim JA, Shin GI, Jeong SY, Lee ES, Yun DJ, Lee SY, Kim WY (2020) Expression of Arabidopsis thaliana thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance. Plant Physiol Biochem 147:313–321. https://doi.org/10.1016/j.plaphy.2019.12.032
Article
CAS
PubMed
Google Scholar
Jiang J, Ren X, Li L, Hou R, Sun W, Jiao C, Yang N, Dong Y (2020) H2S Regulation of Metabolism in cucumber in response to salt-stress through transcriptome and proteome analysis. Front Plant Sci 11:1283. https://doi.org/10.3389/fpls.2020.01283
Article
PubMed
PubMed Central
Google Scholar
Jung KW, Kim YY, Yoo KS, Ok SH, Cui MH, Jeong BC, Yoo SD, Jeung JU, Shin JS (2013) Acystathionine-β-synthase domain-containing protein, CBSX2, regulates endothecial secondary cell wall thickening in anther development. Plant Cell Physiol 54:195–208. https://doi.org/10.1093/pcp/pcs166
Article
CAS
PubMed
Google Scholar
Jung HI, Kong MS, Lee BR, Kim TH, Chae MJ, Lee EJ, Jung GB, Lee CH, Sung JK, Kim YH (2019) Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate-glutathione homeostasis in rice seedlings. Front Plant Sci 10:1089. https://doi.org/10.3389/fpls.2019.01089
Article
PubMed
PubMed Central
Google Scholar
Kader JC (1997) Lipid transfer proteins: a puzzling family of plant proteins. Trends Plant Sci 2:66–70. https://doi.org/10.1146/annurev.arplant.47.1.627
Article
Google Scholar
Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44:921–937. https://doi.org/10.1016/j.freeradbiomed.2007.11.008
Article
CAS
PubMed
Google Scholar
Khan PSSV, Hoffmann L, Renaut J, Hausman JF (2007) Current initiatives in proteomics for the analysis of plant salt tolerance. Curr Sci 93:807–817
CAS
Google Scholar
Khan MN, Siddiqui MH, AlSolami MA, Alamri S, Hu Y, Ali HM, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Al-Ghamdi A (2020) Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiol Biochem 156:278–290. https://doi.org/10.1016/j.plaphy.2020.09.017
Article
CAS
PubMed
Google Scholar
Kinlaw CS, Gerttula SM, Carter MC (1994) Lipid transfer protein genes of loblolly pine are members of a complex gene family. Plant Mol Biol 26:1213–1216. https://doi.org/10.1007/BF00040702
Article
CAS
PubMed
Google Scholar
Kitajima S (2008) Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-Cys peroxiredoxin. Photochem Photobiol 84:1404–1409. https://doi.org/10.1111/j.1751-1097.2008.00452.x
Article
CAS
PubMed
Google Scholar
Kitajima S, Kurioka M, Yoshimoto T, Shindo M, Kanaori K, Tajima K, Oda K (2008) A cysteine residue near the propionate side chain of heme is the radical site in ascorbate peroxidase. FEBS J 3:470–480. https://doi.org/10.1111/j.1742-4658.2007.06214.x
Article
CAS
Google Scholar
Kneeshaw S, Gelineau S, TadaY LGJ, Spoel SH (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56:153–162. https://doi.org/10.1016/j.molcel.2014.08.003
Article
CAS
PubMed
Google Scholar
Kosova K, Vitamvas P, Prasil IT, Renaut J (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322. https://doi.org/10.1016/j.jprot.2011.02.006
Article
CAS
PubMed
Google Scholar
Li H, Cao H, Wang Y, Pang Q, Ma C, Chen S (2009) Proteomic analysis of sugar beet apomictic monosomic addition line M14. J Proteomics 73:297–308. https://doi.org/10.1016/j.jprot.2009.09.012
Article
CAS
PubMed
Google Scholar
Li H, Pan Y, Zhang Y, Wu C, Ma C, Yu B, Zhu N, Koh J, Chen S (2015) Salt stress response of membrane proteome of Sugar beet monosomic addition line M14. J Proteomics 127:18–33. https://doi.org/10.1016/j.jprot.2015.03.025
Article
CAS
PubMed
Google Scholar
Li C, Ji J, Wang G, Li Z, Wang Y, Fan Y (2020) Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in Tobacco. Front Plant Sci 11:119. https://doi.org/10.3389/fpls.2020.00119
Article
PubMed
PubMed Central
Google Scholar
Lin Y, Chen G, Lin H, Lin M, Wang H, Lin Y (2020) Chitosan postharvest treatment suppresses the pulp breakdown development of longan fruit through regulating ROS metabolism. Int J Biol Macromol 28:601–608. https://doi.org/10.1016/j.ijbiomac
Article
Google Scholar
Liu K, Jiang H, Moore S, Watkins C, Jahn M (2006) Isolation and characterization of a lipid transfer protein expressed in ripening fruit of Capsicum chinense. Planta 223:672–683. https://doi.org/10.1007/s00425-005-0120-0
Article
CAS
PubMed
Google Scholar
Liu YL, Cao D, Ma LL, Jin XF, Yang PF, Ye F (2018) TMT-based quantitative proteomics analysis reveals the response of tea plant (Camellia sinensis) to fluoride. J Proteomics 176:71–81. https://doi.org/10.1016/j.jprot.2018.02.001
Article
CAS
PubMed
Google Scholar
Marcus Y, Gurevitz M (2020) Ferredoxin-mediated reduction of 2-nitrothiophene inhibits photosynthesis: mechanism and herbicidal potential. Biochem J 477:1149–1158. https://doi.org/10.1042/BCJ20190830
Article
CAS
PubMed
Google Scholar
Mata-Pérez C, Spoel SH (2019) Thioredoxin-mediated redox signaling in plant immunity. Plant Sci 279:27–33. https://doi.org/10.1016/j.plantsci.2018.05.001
Article
CAS
PubMed
Google Scholar
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160. https://doi.org/10.1089/ars.2011.4327
Article
CAS
PubMed
Google Scholar
Miller G, Suzuki N, CIFTCI-YILMAZ S, MITTLER R, (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
Article
CAS
PubMed
Google Scholar
Miralles VJ, Serrano R (1995) A genomic locus in Saccharomyces cerevisiae with four genes up-regulated by osmotic stress. Mol Microbiol 17:653–662. https://doi.org/10.1111/j.1365-2958.1995.mmi_17040653.x
Article
CAS
PubMed
Google Scholar
Mock HP, Dietz KJ (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta 1864:967–973. https://doi.org/10.1016/j.bbapap.2016.01.005
Article
CAS
PubMed
Google Scholar
Navrot N, Finnie C, Svensson B, Hägglund P (2011) Plant redox proteomics. J Proteomics 74:1450–1462. https://doi.org/10.1016/j.jprot.2011.03.008
Article
CAS
PubMed
Google Scholar
Palmeros-Suárez PA, Massange-Sánchez JA, Sánchez-Segura L, Martínez-Gallardo NA, Espitia-Rangel E, Gómez-Leyva JF, Délano-Frier JP (2017) AhDGR2, an amaranth abiotic stress-induced DUF642 protein gene, modifies cell wall structure and composition and causes salt and ABA hyper-sensibility in transgenic Arabidopsis. Planta 245:623–640. https://doi.org/10.1007/s00425-016-2635-y
Article
CAS
PubMed
Google Scholar
Parker J, Zhu N, Zhu M, Chen S (2012) Profiling thiol redox proteome using isotope tagging mass spectrometry. J vis Exp 24:2–7. https://doi.org/10.3791/3766
Article
CAS
Google Scholar
Parker J, Balmant K, Zhu F, Zhu N, Chen S (2015) cysTMTRAQ-An integrative method for unbiased thiol based redox proteomics. Mol Cell Proteomics 14:237–242. https://doi.org/10.1074/mcp.O114.041772
Article
CAS
PubMed
Google Scholar
Pichon M, Gaymard A, Josset L, Valette M, Millat G, Lina B, Escuret V (2017) Characterization of oseltamivir-resistant influenza virus populations in immunosuppressed patients using digital-droplet PCR: comparison with qPCR and next generation sequencing analysis. Antiviral Res 145:160–167. https://doi.org/10.1016/j.antiviral.2017.07.021
Article
CAS
PubMed
Google Scholar
Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–347. https://doi.org/10.1146/annurev.pharmtox.44.101802.121735
Article
CAS
PubMed
Google Scholar
Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146:741–754. https://doi.org/10.1083/jcb.146.4.741
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahak Y, Crowther D, Hind G (1981) The involvement of ferredoxin-NADP+ reductase in cyclic electron transport in chloroplasts. Biochim Biophys Acta 636:234–243. https://doi.org/10.1016/j.jplph.2013.03.016
Article
CAS
PubMed
Google Scholar
Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217. https://doi.org/10.1146/annurev.arplant.58.091406.110525
Article
CAS
PubMed
Google Scholar
Shin JS, So WM, Kim SY, Noh M, Hyoung S, Yoo KS, Shin JS (2020) CBSX3-Trxo-2 regulates ROS generation of mitochondrial complex II (succinate dehydrogenase) in Arabidopsis. Plant Sci 294:110458. https://doi.org/10.1016/j.plantsci.2020.110458
Article
CAS
PubMed
Google Scholar
Strand DD, Fisher N, Kramer DM (2017) The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high effificiency proton pump that increases ATP production by cyclic electron flow. J Biol Chem 292:11850–11860. https://doi.org/10.1074/jbc.M116.770792
Article
CAS
PubMed
PubMed Central
Google Scholar
Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904. https://doi.org/10.1046/j.1365-313x.2002.01474.x
Article
CAS
PubMed
Google Scholar
Taylor NL, Rudhe C, Hulet JM, Lithgow T, Glaser E, Day DA, Millar AH, Whelan J (2003) Environmental stresses inhibit and stimulate different protein import pathways in plant mitochondria. FEBS Lett 547:125–130. https://doi.org/10.1016/s0014-5793(03)00691-4
Article
CAS
PubMed
Google Scholar
Thamsen M, Jakob U (2011) The redoxome proteomic analysis of cellular redox networks. Curr Opin Chem Biol 15:113–119. https://doi.org/10.1016/j.cbpa.2010.11.013
Article
CAS
PubMed
Google Scholar
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3 Plus, an enhanced web interface to primer3. Nucleic Acids Res 35:71–74. https://doi.org/10.1093/nar/gkm306
Article
Google Scholar
Wakeel A, Asif AR, Pitann B, Schubert S (2011) Proteome analysis of sugar beet (Beta vulgaris L.) elucidatas constitutive adaptation during the first phase of salt stress. J Plant Physiol 6:519–526. https://doi.org/10.1016/j.jplph.2010.08.016
Article
CAS
Google Scholar
Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577. https://doi.org/10.1016/j.plaphy.2009.02.009
Article
CAS
PubMed
Google Scholar
Xu X, Wan W, Jiang G, Xi Y, Huang H, Cai J, Chang Y, Duan CG, Mangrauthia SK, Peng X, Zhu JK, Zhu G (2019) Nucleocytoplasmic trafficking of the Arabidopsis WD40 repeat protein XIW1 regulates ABI5 stability and abscisic acid responses. Mol Plant 12:1598–1611. https://doi.org/10.1016/j.molp.2019.07.001
Article
CAS
PubMed
Google Scholar
Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539. https://doi.org/10.1111/nph.14920
Article
CAS
PubMed
Google Scholar
Yang L, Ma C, Wang L, Chen S, Li H (2012) Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. J Plant Physiol 169:839–850. https://doi.org/10.1016/j.jplph.2012.01.023
Article
CAS
PubMed
Google Scholar
Yang L, Zhang Y, Zhu N, Koh J, Ma C, Pan Y, Yu B, Chen S, Li H (2013) Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14. J Proteome Res 12:4931–4950. https://doi.org/10.1021/pr400177m
Article
CAS
PubMed
Google Scholar
Yoo KS, Ok SH, Jeong BC, Jung KW, Cui MH, Hyoung S, Le MR, Song HK, Shin JS (2011) Single cystathionine beta-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. Plant Cell 23:3577–3594. https://doi.org/10.1105/tpc.111.089847
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu B, Li J, Koh J, Dufresne C, Yang N, Qi S, Zhang Y, Ma C, Duong BV, Chen S, Li H (2016) Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. J Proteomics 143:286–297. https://doi.org/10.1016/j.jprot.2016.04.011
Article
CAS
PubMed
Google Scholar
Yu J, Li Y, Qin Z, Guo S, Li Y, Miao Y, Song C, Chen S, Dai S (2020) Plant chloroplast stress response: insights from thiol redox proteomics. Antioxid Redox Signal 33:35–57. https://doi.org/10.1089/ars.2019.7823
Article
CAS
PubMed
Google Scholar
Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C (2019) Comparative proteomics indicates that redox homeostasis is involved in high- and low-temperature stress tolerance in a novel wucai (Brassica campestris L.) Genotype. Int J Mol Sci 15:3760. https://doi.org/10.3390/ijms20153760
Article
CAS
Google Scholar
Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P (2021) Regulation of plant responses to salt stress. Int J Mol Sci 22(9):4609. https://doi.org/10.3390/ijms22094609
Article
CAS
PubMed
PubMed Central
Google Scholar
Zúñiga-Sánchez E, Soriano D, Martínez-Barajas E, Orozco-Segovia A, Gamboa-deBuen A (2014) BIIDXI, the At4g32460 DUF642 gene, is involved in pectin methylesterase regulation during Arabidopsis thaliana seed germination and plant development. BMC Plant Biol 14:338. https://doi.org/10.1186/s12870-014-0338-8
Article
CAS
PubMed
PubMed Central
Google Scholar