Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260. https://doi.org/10.1007/s00425-003-0995-6
Article
CAS
PubMed
Google Scholar
Aliyeva DR, Aydinli LM, Zulfugarov IS, Huseynova IM (2020) Diurnal changes of the ascorbate-glutathione cycle components in wheat genotypes exposed to drought. Funct Plant Biol. https://doi.org/10.1071/FP19375
Article
PubMed
Google Scholar
Alvarez S, Zhu M, Chen S (2009) Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. J Proteom 73:30–40. https://doi.org/10.1016/j.jprot.2009.07.005
Article
CAS
Google Scholar
Azzouz-Olden F, Hunt AG, Dinkins R (2020) Transcriptome analysis of drought-tolerant sorghum genotype SC56 in response to water stress reveals an oxidative stress defense strategy. Mol Biol Rep 47:3291–3303. https://doi.org/10.1007/s11033-020-05396-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854. https://doi.org/10.1126/science.2188360
Article
CAS
PubMed
Google Scholar
Bodra N, Young D, Rosado LA, Pallo A, Wahni K, Proft FD, Huang J, Breusegem FV, Messens J (2017) Arabidopsis thaliana dehydroascorbate reductase 2: conformational flexibility during catalysis. Sci Rep 7:42494. https://doi.org/10.1038/srep42494
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherki G, Ahmed F, Khalid F (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50. https://doi.org/10.1016/S0098-8472(01)00109-5
Article
Google Scholar
Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione—linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164. https://doi.org/10.1016/j.freeradbiomed.2015.09.023
Article
CAS
PubMed
Google Scholar
FAO (2008) FAO land and plant nutrition management service. http://www.fao.org/land-water/en/
Fu C, Hu J, Liu T, Ago T, Sadoshima J, Li H (2008) Quantitative analysis of redox-sensitive proteome with DIGE and ICAT. J Proteome Res 7:3789–3802. https://doi.org/10.1021/pr800233r
Article
CAS
PubMed
PubMed Central
Google Scholar
Genschik P, Jamet E, Philipps G, Parmentier Y, Gigot C, Fleck J (1994) Molecular characterization of a beta-type proteasome subunit from Arabidopsis thaliana co-expressed at a high level with an alpha-type proteasome subunit early in the cell cycle. Plant J Cell Mol Biol 6:537–546. https://doi.org/10.1046/j.1365-313x.1994.6040537.x
Article
CAS
Google Scholar
Getting M, Sambrook J (1992) Protein folding in the cell. Nature 355(6):33–45
Article
Google Scholar
Guo D, Liu L, Cang C, Li H, Wang G (2001) Analysis of the transmission frequency of a monosomic addition line of Beta corolliflora Zoss in sugar beet. Dissertation, University of Hei Longjiang
Hanke GT, Kimata-Ariga Y, Taniguchi I, Hase T (2004) A post genomic characterization of Arabidopsis ferredoxins. Plant Physiol 134:255–264. https://doi.org/10.1104/pp.103.032755
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardin SC, Larue CT, Oh M-H, Jain V, Huber SC (2009) Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem J 422:305–312. https://doi.org/10.1042/BJ20090764
Article
CAS
PubMed
Google Scholar
Harshbarger W, Miller C, Diedrich C, Sacchettini J (2015) Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure 23:418–424. https://doi.org/10.1016/j.str.2014.11.017
Article
CAS
PubMed
Google Scholar
Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384. https://doi.org/10.3390/antiox8090384
Article
CAS
PubMed Central
Google Scholar
Held JM, Danielson SR, Behring JB, Atsriku C, Britton DJ, Puckett RL, Schilling B, Campisi J, Benz CC, Gibson BW (2010) Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach. Mol Cell Proteom 9:1400–1410. https://doi.org/10.1074/mcp.M900643-MCP200
Article
CAS
Google Scholar
Hsu JL, Wang LY, Wang SY, Lin CH, Ho KC, Shi FK, Chang IF (2009) Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci 7:42. https://doi.org/10.1186/1477-5956-7-42
Article
CAS
PubMed
PubMed Central
Google Scholar
Jørgensen C, Linding R (2008) Directional and quantitative phosphorylation networks. Brief Funct Genom Proteom 7:17–26. https://doi.org/10.1093/bfgp/eln001
Article
CAS
Google Scholar
Kang H, Hwang I (2014) Vacuolar sorting receptor-mediated trafficking of soluble vacuolar proteins in plant cells. Plants 3:392–408. https://doi.org/10.3390/plants3030392
Article
PubMed
PubMed Central
Google Scholar
Lawrence SR, Gaitens M, Guan Q, Dufresne C, Chen S (2020) S-Nitroso-proteome revealed in stomatal guard cell response to flg22. Int J Mol Sci 21:1688. https://doi.org/10.3390/ijms21051688
Article
CAS
PubMed Central
Google Scholar
Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci 105:8197–8202. https://doi.org/10.1073/pnas.0707723105
Article
PubMed
PubMed Central
Google Scholar
Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, Interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222. https://doi.org/10.1016/s0092-8674(02)00812-7
Article
CAS
PubMed
Google Scholar
Li H, Cao H, Wang Y, Pang Q, Ma C, Chen S (2009) Proteomic analysis of sugar beet apomictic monosomic addition line M14. J Proteom 73:297–308. https://doi.org/10.1016/j.jprot.2009.09.012
Article
CAS
Google Scholar
Li H, Pan Y, Zhang Y, Wu C, Ma C, Yu B, Zhu N, Koh J, Chen S (2015) Salt stress response of membrane proteome of sugar beet monosomic addition line M14. J Proteom 127:18–33. https://doi.org/10.1016/j.jprot.2015.03.025
Article
CAS
Google Scholar
Li J, Wang K, Ji M, Zhang T, Yang C, Liu H, Chen S, Li H, Li H (2021) Cys-SH based quantitative redox proteomics of salt induced response in sugar beet monosomic addition line M14. Bot Stud 62:16. https://doi.org/10.1186/s40529-021-00320-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu P, Zhang H, Wang H, Xia Y (2014) Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method. Proteomics 14:750–762. https://doi.org/10.1002/pmic.201300307
Article
CAS
PubMed
Google Scholar
Liu Y, Ji D, Turgeon R, Chen J, Lin T, Huang J, Luo J, Zhu Y, Zhang C, Lv Z (2019) Physiological and proteomic responses of mulberry trees (Morus alba L.) to combined salt and drought stress. Int J Mol Sci 20:2486. https://doi.org/10.3390/ijms20102486
Article
CAS
PubMed Central
Google Scholar
Liu J, Fu C, Li G, Khan MN, Wu H (2021) ROS homeostasis and plant salt tolerance: plant nanobiotechnology updates. Sustainability. https://doi.org/10.3390/su13063552
Article
Google Scholar
Menon SG, Goswami PC (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26:1101–1109. https://doi.org/10.1038/sj.onc.1209895
Article
CAS
PubMed
Google Scholar
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/s1360-1385(02)02312-9
Article
CAS
PubMed
Google Scholar
Navrot N, Finnie C, Svensson B, Hägglund P (2011) Plant redox proteomics. J Proteom 74:1450–1462. https://doi.org/10.1016/j.jprot.2011.03.008
Article
CAS
Google Scholar
Nogueira SB, Labate CA, Gozzo FC, Pilau EJ, Lajolo FM, Oliveira do Nascimento JR (2012) Proteomic analysis of papaya fruit ripening using 2DE-DIGE. J Proteom 75:1428–1439. https://doi.org/10.1016/j.jprot.2011.11.015
Article
CAS
Google Scholar
Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14:1649–1657. https://doi.org/10.1158/1078-0432.CCR-07-2218
Article
CAS
PubMed
Google Scholar
Pan K-T, Chen Y-Y, Pu T-H, Chao Y-S, Yang C-Y, Bomgarden RD, Rogers JC, Meng T-C, Khoo K-H (2014) Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia. Antioxid Redox Signal 20:1365–1381. https://doi.org/10.1089/ars.2013.5326
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker J, Zhu N, Zhu M, Chen S (2012) Profiling thiol redox proteome using isotope tagging mass spectrometry. J vis Exp 61:3766. https://doi.org/10.3791/3766
Article
CAS
Google Scholar
Pena LB, Azpilicueta CE, Benavides MP, Gallego SM (2012) Protein oxidative modifications. Springer, Berlin, Heidelberg
Book
Google Scholar
Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566. https://doi.org/10.1038/nmeth.2015
Article
CAS
PubMed
Google Scholar
Qu Z, Meng F, Bomgarden RD, Viner RI, Li J, Rogers JC, Cheng J, Greenlief CM, Cui J, Lubahn DB, Sun GY, Gu Z (2014) Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J Proteome Res 13:3200–3211. https://doi.org/10.1021/pr401179v
Article
CAS
PubMed
PubMed Central
Google Scholar
Roos G, Messens J (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 51:314–326. https://doi.org/10.1016/j.freeradbiomed.2011.04.031
Article
CAS
PubMed
Google Scholar
Sasaki H, Ichimura K, Imada S, Yamaki S (2001) Sucrose synthase and sucrose phosphate synthase, but not acid invertase, are regulated by cold acclimation and deacclimation in cabbage seedlings. J Plant Physiol 158:847–852
Article
CAS
Google Scholar
Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, Sarwar G, Chohan SM (2019) Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. Physiol Mol Biol Plants 25:807–820. https://doi.org/10.1007/s12298-019-00676-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447. https://doi.org/10.1093/aob/mcu239
Article
CAS
PubMed
PubMed Central
Google Scholar
Soares A, Ribeiro CSM, Simões I (2019) Atypical and nucellin-like aspartic proteases: emerging players in plant developmental processes and stress responses. J Exp Bot 70:2059–2076. https://doi.org/10.1093/jxb/erz034
Article
CAS
PubMed
Google Scholar
Tullio MD, Guether M, Balestrini R (2013) Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav 8:e23213. https://doi.org/10.4161/psb.23213
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyler JS, Friedman DI (2004) Characterization of a eukaryotic-like tyrosine protein kinase expressed by the Shiga toxin-encoding bacteriophage 933W. J Bacteriol 186:3472–3479. https://doi.org/10.1128/jb.186.11.3472-3479.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wang S, Lu Y, Alvarez S, Hicks LM, Ge X, Xia Y (2012) Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis. J Proteome Res 11:412–424. https://doi.org/10.1021/pr200918f
Article
CAS
PubMed
Google Scholar
Wang Y, Xiao X, Zhang T, Kang H, Zeng J, Fan X, Sha L, Zhang H, Yu K, Zhou Y (2014) Cadmium treatment alters the expression of five genes at the Cda1 locus in two soybean cultivars [Glycine max (L.) Merr]. Sci World J 2014:979750. https://doi.org/10.1155/2014/979750
Article
CAS
Google Scholar
Wang Q, Liu S, Zhai A, Zhang B, Tian G (2018) AMPK-mediated regulation of lipid metabolism by phosphorylation. Biol Pharm Bull 41:985–993. https://doi.org/10.1248/bpb.b17-00724
Article
CAS
PubMed
Google Scholar
Xu FQ, Xue HW (2019) The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ 42:2931–2944. https://doi.org/10.1111/pce.13633
Article
CAS
PubMed
Google Scholar
Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr 60:796–804. https://doi.org/10.1111/jipb.12689
Article
CAS
Google Scholar
Yang L, Ma C, Wang L, Chen S, Li H (2012) Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. J Plant Physiol 169:839–850. https://doi.org/10.1016/j.jplph.2012.01.023
Article
CAS
PubMed
Google Scholar
Yang L, Zhang Y, Zhu N, Koh J, Ma C, Pan Y, Yu B, Chen S, Li H (2013) Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14. J Proteome Res 12:4931–4950. https://doi.org/10.1021/pr400177m
Article
CAS
PubMed
Google Scholar
Yin Z, Balmant K, Geng S, Zhu N, Zhang T, Dufresne C, Dai S, Chen S (2017) Bicarbonate induced redox proteome changes in Arabidopsis suspension cells. Front Plant Sci 8:58. https://doi.org/10.3389/fpls.2017.00058
Article
PubMed
PubMed Central
Google Scholar
Yu B, Li J, Koh J, Dufresne C, Yang N, Qi S, Zhang Y, Ma C, Duong BV, Chen S, Li H (2016) Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. J Proteom 143:286–297. https://doi.org/10.1016/j.jprot.2016.04.011
Article
CAS
Google Scholar
Yu C, Yan M, Dong H, Luo J, Ke Y, Guo A, Chen Y, Zhang J, Huang X (2021) Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. Plant Sci 302:110676. https://doi.org/10.1016/j.plantsci.2020.110676
Article
CAS
PubMed
Google Scholar
Zhang Y, Liu Y, Zhang J, Wang G, Wang J, Liu Y (2015) Assessment of transgene copy number and zygosity of transgenic maize overexpressing Cry1Ie gene with SYBR® Green qRT-PCR. In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-014-9658-5
Article
Google Scholar
Zhang T, Zhu M, Zhu N, Strul JM, Dufresne CP, Schneider JD, Harmon AC, Chen S (2016) Identification of thioredoxin targets in guard cell enriched epidermal peels using cysTMT proteomics. J Proteom 133:48–53. https://doi.org/10.1016/j.jprot.2015.12.008
Article
CAS
Google Scholar
Zhou Y, Liu C, Tang D, Yan L, Wang D, Yang Y, Gui J, Zhao X, Li L, Tang X, Yu F, Li J, Liu L, Zhu Y, Lin J, Liu X (2018) The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. Plant Cell 30:1100–1118. https://doi.org/10.1105/tpc.17.01000
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu H, Bi Y-D, Yu L-J, Guo D-D, Wang B-C (2009) Comparative proteomic analysis of apomictic monosomic addition line of Beta corolliflora and Beta vulgaris L. in sugar beet. Mol Biol Rep 36:2093–2098. https://doi.org/10.1007/s11033-008-9421-2
Article
CAS
PubMed
Google Scholar